

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Effect of Adding Vitamin D Supplementation to Clomiphene Citrate for Induction of Ovulation in Overweight Women with Polycystic Ovary Syndrome: A Double Blinded RCT

Thesis Submitted for partial fulfillment of master's degree in Obstetrics and Gynecology

By Yasmine Ali Salim

M.B., B.Ch. (2006) Cairo University Specialist of Obstetrics and Gynecology Port Said General Hospital

Under Supervision of **Dr. Hazem Mohamed Sammour**

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Abdellatif Galal Elkholy

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Radwa Rasheedy Ali

Assistant professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2021

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful. I can do nothing without Him.

I would like to express my sincere gratitude to **Prof. Hazem Mohamed Sammour,** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, guidance and support.

My deep gratitude goes to **Prof. Abdellatif Galal El kholy,** Professor of Obstetrics and Gynecolgy, Faculty of Medicine, Ain Shams University, for his great support, tireless guidance and meticulous supervision throughout this work.

I would like also to thank with all appreciation **Dr. Radwa Rasheedy Ali,** Assistant professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for the efforts and time and she has devoted to accomplishing this work.

Finally, I like to thank all my **Family**, especially my **Parents** and my **Husband**, for their kind care, help and encouragement.

Yasmine Ali Salim

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	
Polycystic Ovary Syndrome	4
Induction of ovulation	16
Role of vitamin D in Infertility	24
Patients and Method	30
Results	41
Discussion	60
Summary and Conclusion	67
Recommendations	71
References	72
Arabic Summary	<u> —</u>

List of Abbreviations

Abbr. Full-term

AFC.....: Antral follicular count

AIS : Aromatase inhibitors

AMH... Anti müllerian hormone

ASRM : American society for reproductive medicine

BMI.....: Body mass index

CC: Clomiphene citrate

CHD Coronary heart disease

COCs.....: Combined Oral Contraceptives

CVD Cardio vascular disease

DHEAS: Dehydro epiandrosterone sulphate

DM: Diabetes Mellitus

E2 : Estradiol

ESHRE: European society of human reproduction

and embryology

ET....: Endometrial thickness

FAI: Free androgen index

FBG....: Fasting blood glucose

FSH : Follicle-stimulating hormone

FT.....: Free testosterone

GnRH.....: Gonadotropin-releasing hormone

HCG.....: Human chorionic gonadotropin

ICSI..... Intra cytoplasmic sperm injection

IR..... Insulin resistance

IVF: In vitro fertilization

LH: Luetinizing hormone

OGTT: Oral glucose tolerance test

OHSS: Ovarian hyper stimulation syndrome

PCOM..... Polycystic ovary morphology

PCOS: Polycystic ovary syndrome

POI.....: Primary ovarian insufficiency

PPBG: Post prandial blood glucose

PRL: Prolactin

SD..... Standard deviation

SERMS.....: Selective estrogen receptors modulators

SHBG.....: Sex hormone-binding globulin

TSH.....: Thyroid stimulating hormone

TT.....: Total testosterone

TVUS: Trans vaginal ultrasound

VD : Vitamin D

VDRs.....: Vitamin D receptors

WC.....: Waist circumference

WHO.. : World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1):	Computer-generated random number	er list 32
Table (2):	Comparison between both gregarding baseline characteristics demographic data.	s and
Table (3):	Obstetric and surgical history in groups	
Table (4):	PCO phenotype in both groups	45
Table (5):	Antral follicular count (AFC) and a of biochemical work-up in both gro	
Table (6):	Main outcome measures in both gro	oups 47
Table (7):	Relative risk and number needed to for main outcome measures in groups	both
Table (8):	Follicular sizes, preovulatory and micendometrial thickness in both groups.	
Table (9):	Multivariable binary logistic regranalysis for the relation between value of D supplementation and occurrent ovulation after adjustement for the of potential confounders	itamin ce of effect
Table (10):	Multivariable binary logistic regranalysis for the relation between vitas supplementation and occurrence biochemical pregnancy after adjust for the effect of potential confounders.	min D e of ement

Table (11): Multivariable binary logistic regression analysis for the relation between vitamin D supplementation and occurrence of clinical pregnancy after adjustement for		~ ~
Table (12):	Incidence of adverse outcomes in both groups	57 58

List of Figures

Figure No	. Title	Page No.
Figure (1):	Participants flow through the study	42
Figure (2):	Main outcome measures in both groups.	•
Figure (3):	Kaplan-Meier (K-M) curves for the to ovulation in either groups	
Figure (4):	Kaplan-Meier (K-M) curves for the to biochemical pregnancy in groups.	either
Figure (5):	Kaplan-Meier (K-M) curves for the to clinical pregnancy in either group	
Figure (6):	Incidence of adverse outcomes in groups	

Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women, having wide range of clinical manifestations. These women may present with reproductive, dermatological, metabolic, psychological and neoplastic implications from adolescence to menopause (Gainder and Sharma, 2019).

Polycystic ovary syndrome is considered the most common cause of anovulatory infertility; around 90–95% of anovulatory women seeking treatment for infertility have PCOS (*Teede et al.*, 2010).

Moreover, PCOS has different long-term effects as metabolic syndrome, type 2 diabetes mellitus (DM), coronary heart disease (CHD), hypertension, infertility, miscarriage, preeclampsia, gestational diabetes and endometrial cancer (*Genazzani et al.*, 2010).

Polycystic ovary syndrome is a common cause of ovarian dysfunction that is characterized by chronic anovulation, hyperandrogenism, and/or the presence of polycystic ovary morphology (PCOM) in ultrasound examination (*Dumesic et al.*, 2015).

Vitamin D (VD) deficiency has become a modern-day epidemic, being the most common nutritional deficiency worldwide. In the United States at least one third of the

population is VD deficient, with 41.7% of adults between the ages of 20 - 64 being VD deficient, and 63% of infertile women had insufficient VD levels (*Forrest and Stuhldreher*, 2011).

Vitamin D insufficiency is present in 58% to 91% of women with infertility, it is more common in women with elevated body mass index (BMI), PCOS, and those of asian or black ethnicity (*Rudick et al.*, 2012).

Women who have PCOS are three times more likely to be severely deficient in VD than those who do not have PCOS; the prevalence of VD deficiency in women with PCOS is about 67 - 85 percent (*Lin and Wu*, 2015).

In obese women, VD is deposited in adipose tissues, making it unavailable for the body to use. As a result, obese people are expected to have low levels of serum VD (Yildizhan et al., 2009).

There is an observed decline in androgens level following 3-months supplementation with VD and calcium in overweight women with PCOS. Reduction in total testosterone (TT) by 12% and androstenedione by17% is comparable in magnitude to the effect described with the metformin use (*Pal et al.*, 2012).

Vitamin D and calcium supplementation in addition to metformin therapy in women with PCOS could result in the beneficial effects on menstrual regularity and ovulation (*Rashidi et al.*, 2009).

Aim of the Work

The aim of the study was to evaluate the effect of VD supplement on ovulation rate in overweight women with PCOS who underwent induction of ovulation by clomiphene citrate.

Research question:

In overweight women with PCOS who will undergo induction of ovulation by clomiphene citrate can the addition of VD supplement improve the ovulation rate compared to placebo?

Alternative hypothesis:

In overweight women with PCOS who will undergo induction of ovulation by clomiphene citrate the addition of VD supplementat will not improve the ovulation rate compared to placebo.