

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

STUDYING LAND CAPABILITY CLASSES AND SOIL CLASSIFICATION FOR SOME AREAS IN SOUTH EGYPT AND NORTH SUDAN

BY

KAREMA MOHAMED RASLAN MOHAMED

B. Sc. Reclamation and Cultivation of Desert, Soils, Fac. Agric. (Soils), Cairo University, 2007

Thesis submitted in partial fulfillment of the requirements
for the Master Degree in
African Studies
(Soil Resources)

Department of Natural Resources Faculty of African Postgraduate Studies

Cairo University

STUDYING LAND CAPABILITY CLASSES AND SOIL CLASSIFICATION FOR SOME AREAS IN SOUTH EGYPT AND NORTH SUDAN

BY

KAREMA 'MOHAMED RASLAN MOHAMED

B. Sc. Reclamation and Cultivation of Desert, Soils, Fac. Agric. (Soils), Cairo University, 2007

A thesis submitted to the Department of Natural Resources, Faculty of Africa postgraduate Studies, Cairo University, in partial fulfillment of the requirements for the Degree of Master in African Studies (Soil Resources)

Under the supervision of:

1- Prof. Dr. Adel Saad El-Hasanin

Prof. of Soil Sciences, Natural Resources Dept., Faculty of African Postgraduate Studies, Cairo University, Egypt.

2- Prof. Dr. Hosny Hussein Hassona.

Prof. of Soil Sciences, Soils, Water & Environ. Res. Institute, ARC.

3- Prof. Dr. Magdy Rizk Rofaiel Samak

Emeritus Prof. of Soil Sciences, Natural Resources Dept., Faculty of African Postgraduate Studies, Cairo University, Egypt.

STUDYING LAND CAPABILITY CLASSES AND SOIL CLASSIFICATION FOR SOME AREAS IN SOUTH EGYPT AND NORTH SUDAN

BY

KAREMA 'MOHAMED RASLAN MOHAMED

B. Sc., Agric. (Soils), Cairo University, 2007

A thesis submitted to the Department of Natural Resources, Faculty of Africa Postgraduate Studies, Cairo University in partial fulfillment of the requirements for the Degree of Master in African Studies (Soil Resources)

Approved by:

Prof . Dr. Dr. Adel Saad El-Hasanin

Prof. of Soil Sciences, Natural Resources Dept., Faculty of African Postgraduate Studies, Cairo University, Egypt.

Signature:

Prof. Dr. Hosny Hussein Hassona.

Prof. of Soil Sciences, Soils, Water & Environ. Res. Institute, ARC.

Signature:

Prof . Dr. El Sayed Ibrahim Gaber

Prof. of Soil Sciences, Natural Resources Dept., Faculty of African Postgraduate Studies, Cairo University, Egypt.

Signature:

Prof. Dr. Mahmoud Soliman Mohamed Ibrahim

Prof. of Soils, Water & Environ. Res. Institute, ARC.

Signature: Date: / / 2021

ACKNOWLEDGMENT

The author wishes to express her sincere thanks and deep gratitude to **Prof.Dr. Adel Saad El-Hasanin**, Professor of Soil Sci., Natural Resource Department, Fac. of African postgraduate Studies, Cairo University, for his supervision, helpful, guidance and continuous encouragement during the course of this study.

The author would like also to express her deep appreciation and sincere gratitude to **Prof.Dr. Hosny Hussein Hassona** Professor of Soil Sci. Soils, Water and Environment Research Institute, Agriculture Research Center, Giza for his supervision, valuable help and encouragement during the period of this study.

Faithful thanks are due to **Dr. Magdy Rizk Rofaiel Samak**, Professor of Soil Sci., Natural Resource Department, Fac. of African postgraduate Studies, Cairo University, for his supervision, useful advice and guidance of this work.

Deep thanks should be expressed to **Dr. Mahmoud Soliman Mohamed, Assoc. Prof.** of Soils, Water and Environment Research Institute, Agriculture Research Center, for valuable help and encouragement during the period of this study.

At the beginning, praise and thanks be to God for all my affairs. I also dedicate a special gift to my mother's soul, as she gave me the determination to complete my practical and scientific life. In particular, I would like to thank my professors for her support and motivation in completing my master's thesis. I thank the Soil, Water and Environment Research Institute for its supportive role. and thank you Specific thanks are also extended to Dr. Abdellatif Deyab. Abdellatif Assoc. Prof. of soil Sci.; Dr. Gamal T. Abo El Hag Assoc. Prof. of soil Sci.; Prof. Dr. Ibrahem AbdEl- moneim Hegab Prof. of Soil Sci., and the Staff Members of Soils, Water and Environment Research Institute for their great help and cooperation throughout this work.

ABSTRACT

Kom Ombo western plain occupies about 321.000 feddans. It extends in the western side of Kom Ombo district, Aswan Governorate. It runs parallel to the alluvial soils of the Nile valley between Idfu and Aswan sites. The aim of this investigation is to study physical, chemical and mineralogical Characteristic of Kom Ombo western plain soils in order to evaluat their capability and suitability for growing main crops using RS, GIS and Sys - Arid system.

To fulfill these objectives, Santinal 2 images and digital elevation model (DEM) of the studied area were used to define the geomorphic units.

The geomorphic units of the area under considerations could be grouped and described as recent alluvial terraces, old alluvial terraces, Pediplain, alluvial plain, Wadi plain and rock outcrop. The different landforms were represented by 22 Soil profiles, the morphological description was carried out and 64 disturbed soil samples were collected for physical, chemical and mineralogical analysis. The obtained results revealed that all studied soils could be categorized into two orders Aridisols and Entisols and are classified up to the family Level under five Sub great groups namely, Typic Haplosalids. Typic Torrifluvents, Vertic Torrifluvents, Vertic Torriorthents, and Typic Torriorthents. Mineralogical composition of the clay fraction separated from some soil layers representing Kom Ombo western plain and clay minerals were identified. using X-ray. The results indicated that the studied soils are dominated by Kaolinite followed by smectite with less pronounced occurrence of illite and chlorite. The identified accessory minerals were also dominanted by quartz and feldspars. Calcite, dolomite and apatite were also detected but occurred in few amounts in some samples. Also, the mineralogical composition of the fine sand and silt fractions were dominated with quartz and some extent with Kaolinite. Other identified minerals are Calcite, feldspars, dolomite, gypsite, albaite, siderite, hematite, pyrite, magnetite, muscovite and apatite in less pronounced occurrence. The studied soils were evaluated for their suitability for agricultural use. They were categorized from classes namely; moderately suitable (S2), marginally suitable (S3), Currently not Suitable (N1) and permanently not suitable (N2). These soils are currently suffering from limitations of texture, salinity and alkalinity, topography, gypsum and carbonate with different intensity. The severty as these limitations could be corrected by further land improvements. Accordingly, the potential suitability of the most studied soils could be improved to moderately suitable (S2), marginally suitable (S3 and not suitable (N2).

Moreover, the suitability of 18 main crops in these soils was carried out in the current and potential situations. The results indicated that these soils were not suitable for growing some crops in the current situations. The potential suitability of the soils for these crops could be improved according to the satisfaction conditions between soil properties and crops requirements.

Sulieman et al. (2015) found the lands of northern Sudan containing three physiographic units. Physiographic unit 1 (first beaches) suitable for cultivation (S2) due to limited soil texture and moderate drainage, while units 2 and 3 (the second and third terraces, respectively) were marginally suitable (S3) due to limitations of poorly drainage (low infiltration rate) and texture (clay). The slope, soil depth, calcium carbonate, salinity, and alkalinity were not considered as limiting factors in all study area.

Key Words: Remote sensing (RS), GIS, DEM, Land evaluation, Soil classifications.

CONTENTS

Contents	Page
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1- Location	3
2.2- climatic conditions	3
2.2.1- Air temperature	5
2.2.2- Relative humidity	5
2.2.3- Averag precipitation	7
2.2.4- Wind Speed	8
2.2.5- The climatic zone	8
2.3- Geology of the studied area	9
Precambrian period and younger magmatic rocks	10
Mesozoic period (Cretaceous age)	10
Lower Cretaceous	11
Cenozoic period	11
Quaternary age	12
2-4- Geomorphology of the study area	14
2.5- Water Resources:	17
2.5.1- Ground water	17
2.5.2- Nile River	18
2.6- Natural vegetation	19
2.7- Main characteristics of the study soils:	21
2.7.1- Some physical and chemical properties	21
2.7.2- Mineralogical properties:	23
2.7.2- 1- Clay minerals.	23
2.7.2.2- Heavy and light minerals	24
2.7.3- Grain size analysis:	25

Contents	Page
2.8- Land Evaluation	26
2.8.1- Land capability	26
2.8.2- Land suitability	28
2.9- Soil classification:	29
2.10- soils of North Sudan	30
3- MATERIALS AND METHODS	36
3.1- Data Sources	36
3.1,1- Maps	36
3.2- Digital elevation model (DEM)	36
3.3- Satellite data	40
3.4- Field Work	40
3.4.1- Soil Samples	40
3.4.2- Water Samples:	43
3.4.3- Soil analyses	43
3.4.4- Water Analyses	45
3.4.5- Hydraulic Conductivity	46
3.5- Soil classification	46
3.6- Separation of clay, silt and sand fractions	46
3.6.1- Mineralogical analysis of the soil fractions	47
3.7- Land Evaluation	47
3.8- Crop water requirements	50
4- RESULTS AND DISCUSSION	51
4.1- Identification of the geomorphic units using remote sensing	51
in the study area.	31
4.2- General view on the geomorphic units	53
4.2.1- Alluvial terraces	53
4.2.2- plain	53

Contents	Page
4.2.3- Rock outcrops	53
4.3- Morphological features and physio-Chemical properties of	53
the study area	
4.3.1. Soils of Recent alluvial terraces	54
4.3.2- Soils of the old alluvial terraces	60
3.4.3- Soils of pediplain	63
3.4.4- Soils of alluvial plain	64
3.4.5- Soils of Wadi plain	66
4.4- Soil fertility status	74
4. 4.1. Available macronutrients	74
4.4. 1.1 Available nitrogen	
4.4. 1.2. Available phosphorus	75
4.4. 1.3. Available potassium	78
4. 4.2. Available micronutrients	79
4.4.2.1. Available iron	
4.4.2.2. Available manganese	79
4. 4. 2. 3. Available Zinc	80
4. 2.4. Available copper	80
4.5. Physical properties	81
4.5.1. Total porosity and pore size distribution	81
4.5.2- Soil moisture contents	85
4.5.3- Hydrolic Conductivity	
4.6. Particle size distribution	87
4.7. 1- The Median "Md"	88
2- Coefficient of Sorting "So"	88
3- Coefficient of skewness "Sk"	88
4.6.1- Soils of recent alluvial terraces	89

Contents	Page
4.6.2- soils of old alluvial plain terraces	90
4.6.3- Soils of pediplain	90
4.6.4- Soils of alluvial plain	
4.6.5. soils of wadi plain	91
4.7. Mineralogy of the clay fraction	98
4. 7.1. Mineralogy of the clay fraction	98
4. 7. 1.1. Soils of recent alluvial terraces	99
4. 7. 1. 2. Soils of old alluvial terraces	100
4. 7.1.3. Soils of alluvial plain	100
4. 7.1. 4. Soils of wadi plain	101
4. 7.1.5. Foils of Pediplain	101
4.7.2. Mineralogical composition fine sand and silt fractions	117
4.8- Soil classification	125
4.8.1.Soils belonging to the order "Aridisols"	125
4.8.2. Soil belonging to the order Entisols	126
4.10- Hydro chemistry of irrigation water	130
4.10.1. Hydrogen ion activity (pH).	130
4.10.2- Electrical conductivity (ECe)	131
4.10.3- Soluble ions	131
4.10.4 Sodium adsorption ratio (SAR)	131
4.10.5. Residual sodium carbonate (RSC).	134
4.10.6- Total hardness.	134
4.10.7- Suitability of water for irrigation	135
Classification according to salinity content	135
Classification according to ECe and SAR	136
4.9. Soil Evaluation	137
4.9.1. Land capability	137
4.9.1.1. Current Land Capability	137
4. 4.9.1.2- Potential land suitability	141