

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Cairo University Faculty of Veterinary Medicine Department of Microbiology and Immunology

Molecular and conventional assays for detection of Arcobacter species

A Thesis Submitted by

Lamiaa Abdel Ghaffar Abdel Azim Abdel Ghaffar

(B.V.Sc. Cairo University, 2009)

For the degree of M.V.Sc. Microbiology and Immunology

Under Supervision of

Prof. Dr. Khaled Farouk M. Al-Amry

Professor of Microbiology and Immunology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Mahmoud Al-Hariri

Professor of Microbiology and Immunology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Alaa Eldin Eissa

Professor of Aquatic Animal Medicine and Management Faculty of Veterinary Medicine Cairo University

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Mohared Abd solar

Approval Sheet

This is to certify that the dissertation submitted by Vet./ Lamiaa Abdel Ghaffar Abdel Azim Abdel Ghaffar to Cairo University, for the master degree of Veterinary Medical Sciences, Microbiology and Immunology has been approved by the examining committee:

Prof. Dr./ Alaa El Din Hussein Mustafa

Professor of Microbiology

Faculty of Veterinary Medicine

Sadat University

Prof. Dr./ Mohamed Ibrahim Abdel Salam

Professor of Aquatic Animal Medicine & Management

Faculty of Veterinary Medicine

Cairo University

Prof. Dr./ Khaled Farouk Mohamed Abdel Hamid El-Amry (Supervisor)

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr./ Alaa Eldin Eissa (Supervisor)

Professor of Aquatic Animal Medicine & Management

Faculty of Veterinary Medicine

Cairo University

Prof. Dr./ Mahmoud Al-Hariri (Supervisor)

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

M. Homiri

Dated: 131/0/2021

Supervisors

Prof. Dr./ Khaled Farouk Mohamed Abdel Hamid El-Amry

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr./ Alaa Eldin Eissa

Professor of Aquatic Animal Medicine & Management

M. Harn

Faculty of Veterinary Medicine

Cairo University

Prof. Dr.// Mahmoud Dardiri Al-Hariri

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology and Immunology

Name: Lamiaa Abdel Ghaffar Abdel Azim Abdel Ghaffar

Birth date: 26-3-1988 Nationality: Egyptian. Scientific degree: M. V. Sc.

Specification: Microbiology and Immunology.

Title of thesis: Molecular and conventional assays for detection of *Arcobacter* species.

Under the supervision of:

• **Prof. Dr. Khaled Farouk M. Al-Amry** Professor of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University.

- **Prof. Dr. Alaa Eldin Eissa** Professor of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University.
- **Prof. Dr. Mahmoud Al-Hariri** Professor of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University.

Abstract

Untreated poultry manure/droppings were used in integrated fish ponds as organic fertilizers. This process could put an additional complexity on the bacterial load within fish's ponds ecosystem. Arcobacter species is one of the most important food-borne zoonotic pathogens that infect humans, animals, fish, and fowl. This study aimed to examine if raw poultry manure could enhance arcobacter propagation among the cohabitant Nile tilapia. In addition, the comparative phenotypic and molecular characterizations among various Arcobacter spp. retrieved from two diverse animal hosts (the Nile tilapia and fowl) with special reference to antibiotic-resistant and virulence genes traits were also studied. Clinically, the examined Nile tilapias exhibited darkness, fin rot, and skin hemorrhages. Internally, the Nile tilapias displayed severe congestion in internal organs, catarrhal enteritis, and swollen gall bladder. The moribund chickens exhibited mild diarrhea, anorexia, and ruffled feathers. Internally, chickens displayed enlarged spleen and liver, enteritis, and kidney congestion. The bacterial colonies on arcobacter selective agar appeared small and non-pigmented with an intact edge. The recovered bacterial isolates were identified as Arcobacter spp. depending on the phenotypic characters and PCR. Sequencing of 16S rRNA gene confirmed the identity of Arcobacter butzleri (A. butzleri), A. skirrowii, and A. cryaerophilus in both fish and fowl, while A. cloacae was confirmed in fish. PCR confirmed the occurrence of two virulence genes (pldA and tlyA) in most fish and chicken Arcobacter isolates. All chicken Arcobacter isolates showed resistance against ampicillin, ampicillin-sulbactam, and cefotaxime, and variable susceptibility to ciprofloxacin, aztreonam, imipenem, and amikacin. Fish Arcobacter isolates were sensitive to ciprofloxacin, sulphatrimethoprim, and amikacin.

Keywords: Arcobacter species, Chicken, Nile tilapia, virulence genes, Egypt.

To my mother's soul, my father, my brother and my husband

ACKNOWLEDGMENT

An infinite gratitude goes to our merciful God who granted me the strength and potential to pursue this fascinating research.

I wish to express my sincere gratitude to my helpful supervisor <u>Prof. Dr.</u> <u>Khaled Farouk M. Al-Amry</u>, Professor of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, for his planning, stimulating supervision, guidance, continuous help and patience during supervising this work.

Many thanks are expressed to <u>Prof. Dr. Alaa Eldin Eissa</u>, Professor and chairperson of the Department of Aquatic Animal Medicine & Management, Faculty of Veterinary Medicine, Cairo University for his continuous advices, technical guidance, academic support and luxurious support.

My grateful appreciation and thanks are also expressed to <u>Prof. Dr.</u> <u>Mahmoud Al-Hariri</u>, Professor of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University for his careful guidance, stimulating criticism and valuable discussion and advice throughout this work.

It is an intense pleasure to express my thanks and gratitude to all staff members of Microbiology and Immunology Department, Faculty of Veterinary Medicine, Cairo University and Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Cairo University.

Contents

Title	
	No.
Chapter (1): Introduction	1
Chapter (2): Review of literature	4
Chapter (3): Published paper Comparative analysis of 16S rRNA based phylogeny, antibiotic susceptibility, and virulence traits of Arcobacter species recovered from domestic fowl and the Nile tilapia	34
Chapter (4): Discussion	59
Chapter (5): Conclusion & Recommendations	62
Chapter (6): Summary	63
Chapter (7): References	67
Arabic Summary	1-3

List of Tables

Table No.	Title	Page		
		No.		
Tables in the published paper entitled: "Comparative analysis of				
16S rRNA based phylogeny, antibiotic susceptibility, and virulence				
traits of Arcobacter species recovered from domestic fowl and the				
Nile tilapia".				
Table 1	Primers used in this study.	40-41		
Table 2	Prevalence of Arcobacter spp. in different	44		
	samples.			
Table 3	Phenotypic and molecular characterization of	45		
	retrieved Arcobacter species			
Table 4	Antibiotic resistant phenotypic of Arcobacter	50		
	spp. isolates recovered from chicken and fish;			
	S: sensitive, I: intermediate, R: resistant			

List of figures

Fig. No.	Title	Page			
		No.			
Figures	Figures in the published paper entitled: "Comparative analysis of 16S				
rRNA based phylogeny, antibiotic susceptibility, and virulence traits of					
Arcobacter species recovered from domestic fowl and the Nile tilapia ".					
Fig. 1	A: Agarose gel electrophoresis of <i>A. butzleri</i> specific	46			
	PCR amplified 16S rRNA using BUTZ and ARCO				
	primers,				
	B: A. skirrowii specific PCR amplified 16S rRNA				
	using SKIR and ARCO primers				
	C: A. cryaerophilus specific PCR amplified 23S				
	rRNA using CRY1 and CRY2				
Fig. 2	Phylogenetic tree constructed based on the	48			
	comparative sequences' analysis of the 16S rRNA				
	gene obtained in this study, showing the intra-and				
	interspecies relationship among the chicken and the				
	Nile tilapia strains of Arcobacter spp. in this study				
	and other related isolates of Arcobacter spp.				
Fig. 3	A: Specific PCR of Arcobacter spp. isolates for	49			
	detecting pldA virulence gene using pldA-f and pldA-				
	r primers that yielded (293 bp).				
	B: Specific PCR of Arcobacter spp. isolates for				
	detecting tlyA virulence gene using tlyA-f and tlyA-r				
	primers that yielded (230 bp).				

Introduction