

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Impact of variation of Pediatric Body Mass Index on Lower Respiratory Tract Infection of Children

AThesis

Submitted for Partial Fulfillment of Ph. D. Degree in Childhood Studies (Children of Special Needs) Department of Medical Studies for Children

By

Mariam Salah El-Deen

MBBCH (2008)
Master's Degree (2016)
Ain Shams University

Supervised By

Dr. Ahmed Mohamed OthmanAl-Kahky

Professor of Physiotherapy Department of Medical Studies for Children Faculty of Post Graduate Childhood Studies Ain Shams University

Dr. Dina Ebrahem Darweish Sallam

Lecturer of Pediatrics Faculty of Medicine Ain Shams University.

2021

Acknowledgments

First, thanks are all due to Allah for Blessing this work until it has reached its end.

My profound thanks and deep appreciation to Prof. Dr. Ahmed Mohammed Alkahky, Professor of Physiotherapy, Faculty of Post Graduate Child Hood Studies- Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Dr. Salah Mostafa**, Professor of Puplic Health & Epidemiology, Faculty post Graduate Child Hood Studies- - Ain Shams University for adding a lot to this study by his experience and for his keen supervision.

I am also thankful to **Dr. Dina Ibrahim Darwish**, Tecturer of Pediatrics, Faculty of Medicine-Ain Shams University for her valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to **Prof. Dr.Mohsen Shalaby**, Professor of Pediatrics, Faculty of Medicine-Banha University for his great support and advice, for his adding a lot to this work by his experience and for his keen supervision.

All thanks & appreciation to All My Patients who were participating in the study and their parents.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

Subject	Page No.
List of Abbreviations	I
List of Tables	III
List of Figures	V
Introduction	1
Aim of work	5
Review of Literature	
• Chapter I: Ideal Pediatric Body Weigh	ıt6
• Chapter II: Lower respiratory tract	infections in
children (Pediatric Pneumonia)	33
• Chapter III: Ideal Pediatric Body We	ight Pediatric
Body Mass Index	49
Patients and Methods	63
Results	69
Discussion	94
Summary	121
Conclusion	125
Recommendations	126
References	127
Arabic Summary	

List of Abbreviations

AECC: American European Consensus Committee.

ARDS : Acute Respiratory Distress

BMI : Body Mass Index.

C dyn : Dynamic Compliance.

CAP : Community Acquired Pneumonia.

CDC : Centers for Disease Control and Prevention.

CMV : Cytomegalo Virus.CRP : C reactive Protein.

ED : Emergency Department.

Embase : Excerpta Medica Database.

EPIC: Etiology of Pneumonia in the Community.

ESR : Erythrocyte Sedimentation Rate.

GFR : Glumerular Filtration Rate.

HPA: Hypothalamo-Pituitary Adrenal Axis.

HSV: Herpes Simplex Virus.

IBW : Ideal Body Weight.ICU : Intensive Care Unit.

MARSA: Mecillin Resistant Staph Aurius.

MDG : Millenium Development Eradication Goal.

MDG 1 : First Millennium Development Goal.

MEDLINE: Medical Literature Analysis and Retrieval. System

Online.

NHANES: National Health and Nutrition Examination

Survey.

PARDS: Pediatric Acute Respiratory Distress.

PMS : Premenstrual Syndrome.

RSV : Respiratory Syncitial Virus.

🕏 List of Aberrations 🗷

RTIS : Respiratory Tract Infections.

SPSS: Statistical Program of Social Science.

US : United States.

VCV: Volume Control Ventilation.

VHL : Virtual Health Library.

WHO: World Health Organization.

List of Tables

Tab	le No. Title	Page No.
1.	Diagnosing Pneumonia in the Presen	nce of Cough46
2.	Demographic and anthropometric	measurements of
	study groups as regard type of patien	nts70
3.	Demographic and anthropometric	measurements of
	study groups as regard clinical prese	ntation71
4.	Demographic and anthropometric	measurements of
	study group as regard complications	&ICU admission72
5.	Demographic and anthropometric	measurements of
	study group as regard cost burd	den on person &
	community	73
6.	Percentage of gender in relation to ea	ach group75
7.	Number & percentage of each typ	e of pneumonia in
	relation to study groups	76
8.	Presence & degree of respiratory d	istress among each
	study group	77
9.	Need & duration of Mechanical	ventilation among
	each study group	79
10.	Types of causative organisms among	g each study group,
	number of cases & percentage	81
11.	Frequency of complications and pero	centage among each
	study group	.82

🕃 List of Tables 🗷

12.	Types and frequency of complications and percentage
	among each study group84
13.	Duration of hospital admission among each group and
	percentage86
14.	Duration of paternal work absenteeism among study
	groups88
15.	Duration of maternal work absenteeism among study
	groups90
16.	Duration of school absenteeism among study groups92

List of Figures

Fig. No.	Title	Page No.
1. Examples of v	veight calculating for	mula8
2. Weight & height	ght measurements for	boys &girls at different
age groups		9
3. Relation betw	een presence & degre	ee of respiratory distress
among each st	tudy group	30
4. Radiological f	indings in respiratory	distress46
5. Grades of resp	oiratory distress	47
6. Radiological f	indings in respiratory	distress47
7. Classification	of respiratory distre	ss according to clinical
presentation		48
8. The CDC BM	I for age growth char	ts59
9. Relation betw	een presence & degre	ee of respiratory distress
among each st	tudy group	78
10. Need & dur	ration of Mechanical	ventilation among each
study group.		80
11. Frequency o	f complications and	percentage among each
study group.		83
12. Types and t	frequency of compli	cations and percentage
among each	study group	85
13. Duration of	hospital admission	among each group and
percentage		87

🕏 List of Figures 🗷

14.	Duration	of	paternal	work	absenteeism	among	study
	groups						89
					absenteeism		
	groups						91
16.	Duration	of s	chool abse	enteeis	m among stud	y group.	93

Introduction

Abnormal pediatric body weight is a common public health problem among children within the community, for which the healthcare costs are gradually rising (*Breitfelde et al.*, 2011). Pediatric overweight or underweight are considered as a growing worldwide problems that requires a great care &follow up due to its broad reflex on the medical systems for both children and adults (*Janssen et al.*, 2009).

The prevalence of overweight among children and adolescents has rapidly increased. In the past Thirty years, pediatric obesity had doubled in children and tripled in adolescents worldwide (*Joe-Ann*, 2019).

There are usually vulnerable periods for weight gain through childhood and adolescence periods that also there is ideal time of opportunities for prevention & control of overweight & obesity (*Janssen et al.*, 2009). Overweight in children and adolescents can result in a variety of adverse health outcomes, including type 2 diabetes, obstructive sleep apnea, hypertension, hyperlipidemia and metabolic syndrome. The best approach to face this problem is the prevention of increased weight gain (*Freedman et al.*, 2013).