

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Usefullness of a combined evaluation of the serum adiponectin level and insulin growth factor 1 to predict the early stage of nonalcoholic steatohepatitis

A Thesis

Submitted for Partial Fulfillment of MD Degree in Gastroenterology and Hepatology

By

Dina Morsy Ahmed Mohamed

M.Sc., of Internal Medicine Faculty of Medicine – Ain Shams University

Under Supervision of

Prof. Dr. Mohamed Abdel-Fattah El Malatawy

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Asst. Prof. Dr. Ossama Ashraf Ahmed

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Asst. Prof. Dr. Hany Haron Kaiser

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Doaa Mohamed Abdel Aziz

Lecturer of Clinical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine- Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Mohamed Abdel-Fattah El Malatawy, Professor of Internal Medicine, Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Asst. Prof. Dr. Ossama Ashraf Ahmed, Assistant Professor of Internal Medicine, Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Asst. Prof. Dr. Hany Haron Kaiser, Assistant Professor of Internal Medicine, Faculty of Medicine – Ain Shams University, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to

Dr. Doaa Mohamed Abdel Aziz, Lecturer of Clinical Pathology, Faculty of Medicine – Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Dina Morsy Ahmed Mohamed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
Fatty Liver Disease	4
Adiponectin	
Insulin Growth Factor 1	
Patients and Methods	63
Results	67
Discussion	91
Summary	98
Conclusion	103
Recommendations	104
References	105
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Noninvasive tests for advanced fibrosis in with nonalcoholic fatty liver disease		
Table (2):	Treatment options for nonalcoholic fatt disease	•	
Table (3):	The impact of therapeutic intervention lifestyle modifications on serum adipextracted from clinical studies in group NAFLD or other groups with MetS	onectin os with	
Table (4):	Changes in serum adiponectin in rand controlled trials evaluating the role of the agents in NAFLD	rapeutic	
Table (5):	Basic clinical data among 60 subjects:		67
Table (6):	US data among 60 subjects:		69
Table (7):	Laboratory data among 60 subjects:		70
Table (8):	Virology and immunology data amo	_	
Table (9):	Hepatic markers data among 60 subjects:		71
Table (10):	Comparison between the 2 groups as regard clinical data using Mann-Whitney's U a square tests:	nd Chi	
Table (11):	Comparison between the 2 groups as regardata using Chi square test:	ards US	
Table (12):	Comparison between the 2 groups as laboratory data using Mann-Whitney's U te	_	
Table (13):	Comparison between the 2 groups as hepatic markers using Mann-Whitney's U t		
Table (14):	Spearman's correlation analysis for basic c US / laboratory Factors associated Adiponectin level:	l with	

List of Tables (cont...)

Table No.	Title P	age N	0.
Table (15):	Spearman's correlation analysis for basic clini US / laboratory Factors associated with IO level	GF-1	85
Table (16):	Logistic regression model for the Factors affect NASH occurrence using Forward method	_	88
Table (17):	Roc-curve of hepatic markers to predict pat with NASH:		89

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Diagnostic work-up in patients with non-al fatty liver disease		12
Figure (2):	The effect of obesity on adiponectin, resistance and fatty liver		30
Figure (3):	The molecular action of adiponectin in th Adiponectin binds mainly to AdipoR2 on membrane	the cell	35
Figure (4):	Therapeutic strategies upregulating adipone interplaying with adiponectin signalling is alcoholic fatty liver disease	n non-	46
Figure (5):	Gender among 60 subjects.		
Figure (6):	US data among 60 subjects.		
Figure (7):	Comparison between the 2 groups as regards		
Figure (8):	Comparison between the 2 groups as regards		
Figure (9):	Comparison between the 2 groups as regard bilirubin		76
Figure (10):	Comparison between the 2 groups as direct bilirubin		76
Figure (11):	Comparison between the 2 groups as alkaline phosphatase		77
Figure (12):	Comparison between the 2 groups as ferritin		
Figure (13):	Comparison between the 2 groups as Adiponectin level		79
Figure (14):	Comparison between the 2 groups as regard 1 level		79
Figure (15):	Correlation between Adiponectin level and	AST	82
Figure (16):	Correlation between Adiponectin level and	ALT	83
Figure (17):	Correlation between Adiponectin level ar bilirubin		83

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (18):	Correlation between Adiponectin level and bilirubin	
Figure (19):	Correlation between Adiponectin level and level	IGF-1
Figure (20):	Correlation between IGF-1 level and AST	86
Figure (21):	Correlation between IGF-1 level and ALT	86
Figure (22):	Correlation between IGF-1 level and total bi	lirubin 87
Figure (23):	Correlation between IGF-1 level and bilirubin	
Figure (24):	Correlation between IGF-1 level and PT	88
Figure (25):	ROC curve of Adiponectin level (NASH)	90
Figure (26):	ROC curve of IGF-1 level (NASH)	90

List of Abbreviations

Abb.	Full term
ALS	Acid-labile subunit
	5-AMP-activated protein kinase
	aldehyde oxidase
	adaptor protein containing pleckstrin homology domain, phosphotyrosine-binding domain and a leucine zipper motif
ARFI	Acoustic radiation forced impulse
<i>BMI</i>	Body mass index
<i>CPT</i>	Carnitine palmitoyltransferase
<i>CTGF</i>	Connective tissue growth factor
CVD	Cardiovascular disease
<i>FAS</i>	Fatty acid synthase
<i>FFAs</i>	Free fatty acids
<i>G6P</i>	Glucose-6-phosphatase
<i>GH</i>	Growth hormone
HBsAg	Hepatitis B surface antigen
<i>HMW</i>	Highmolecular-weight
HOMA	Homeostatic model assessment
HSCs	Hepatic stellate cells
<i>IGFBP-3</i>	IGF binding protein-3
IGFBPs	IGF binding proteins
<i>IKK-b</i>	Inhibitor kappab kinase
<i>IL</i>	Interleukin
<i>IL-6</i>	Interleukin-6
<i>IR</i>	Insulin resistance
IRS-1	Insulin receptor substrate-1
<i>ITT</i>	Insulin tolerance test
<i>LFTs</i>	Liver function tests
<i>LMW</i>	Low-molecular-weight

List of Abbreviations (Cont...)

Abb.	Full term
MetS	. Metabolic syndrome
	.Middle-molecular-weight
	.Magnetic resonance elastography
	Nonalcoholic fatty liver
	. Nonalcoholic fatty liver disease
	. NAFLD Activity Score
<i>NASH</i>	. Nonalcoholic steatohepatitis
<i>NF</i> κ <i>B</i>	.Nuclear factor-kappaB
PCOS	. Polycystic ovarian syndrome
<i>PEPCK</i>	.Phosphoenolpyruvate carboxykinase
<i>PPAR</i>	.Peroxisome proliferator-activated receptor
<i>ROMs</i>	.Reactive oxygen metabolites
<i>SNPs</i>	.Single nucleotide polymorphisms
<i>T2DM</i>	. Type 2 diabetes mellitus
<i>TGF</i>	. Transforming growth factor
TGs	. Triglycerides
<i>TLR</i>	. Toll-like receptor
<i>TNF</i>	. Tumour necrosis factor
TNF-a	. Tumour necrosis factor alpha
<i>TNF-R</i>	. TNF receptor

INTRODUCTION

The definition of nonalcoholic fatty liver disease (NAFLD) requires that (a) there is evidence of hepatic steatosis, either by imaging or by histology and (b) there are no causes for secondary hepatic fat accumulation such as a significant alcohol consumption, use of steatogenic medication or hereditary disorders (*Chalasani et al.*, 2012).

NAFLD is associated with metabolic risk factors such as obesity, diabetes mellitus, and dyslipidemia *(Chalasani et al., 2012)*.

NAFLD is histologically further categorized into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). NAFL is defined as the presence of hepatic steatosis with no evidence of hepatocellular injury in the form of ballooning of the hepatocytes (*Vernon et al., 2011*).

NASH is defined as the presence of hepatic steatosis and inflammation with hepatocyte injury (ballooning) with or without fibrosis (*Chalasani et al.*, 2012).

Due to the high prevalence of NAFLD in the general population. Using routine liver biopsy to diagnose NAFLD is unreasonable as it has several limitations including its cost, invasiveness, complications, sampling variability, and inter-observer discordance (Gambino et al., 2011).

1

Ultrasonography still represents the first-line diagnostic tool in diagnosis of NASH, compared with other imaging studies, it is widely available, convenient, safe, and relatively inexpensive (*Bohti et al.*, 2011).

Fatty liver can be diagnosed by contrast-enhanced CT if absolute attenuation is less than 40 HU, but this threshold has limited sensitivity, MRI may be useful for excluding fatty infiltration, phase-contrast imaging correlates with the quantitative assessment of fatty infiltration across the entire range of the liver (*Knipe and Gaillard*, 2015).

Serum aminotransferase levels and imaging tests such as ultrasound, CT, and MR do not reliably assess steatohepatitis and fibrosis in patients with NAFLD, therefore, there has been significant interest in developing clinical prediction rules and non-invasive biomarkers for identifying steatohepatitis in patients with NAFLD (*Gambino et al.*, 2011).

Adiponectin is the most abundant and adipose specific adipokine and there is evidence that adiponectin decrease hepatic and systemic insulin resistance and attenuates liver inflammation and fibrosis (*Polyzos et al.*, 2010).

IGF 1 is associated with adiposity and insulin resistance (Runchey et al., 2014).

In this study, we investigate whether adiponectin and IGF 1 are associated with presence of NASH or not.