

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Role of diffusion-weighted MRI in diagnosis and post therapeutic follow up of colorectal cancer.

Thesis
Submitted for partial fulfillment of MD. Degree in Radiodiagnosis

By na Sameh Sah

Mina Sameh Sabry Rizk

MSc. Of Radiology

Supervised by

Prof. Dr Amany Emad Eldeen Rady

Professor of Radiology Faculty of medicine Ain shams University

Prof. Dr Gamal Eldeen Mohamed Niazi

Professor of Radiology Faculty of medicine Ain shams University

Dr. Susan Adil Ali Abdul Rahim

Assistant professor of Radiology Faculty of medicine Ain shams University

Faculty of Medicine
Ain shams University
2021

Acknowledgement

First of all, and above all great thanks to **God**.

I would like to express my deepest gratitude and thanks to Prof **Dr. Amany Emad Eldeen Rady** Professor of Radiodiagnosis, Faculty of medicine, Ain shams University, for giving me the honour of being her candidate, working under her supervision, guided by her experience and precious advices and true concern.

I also extend my thanks and appreciation to Dr. Gamal Niazi, Professor of radiology, Faculty of medicine. Ain shams
University, for his guidance and great help in supervising this work.

Words could not express my great appreciation, thanks and respect to Professor **Dr. Susan Adil Ali** Assistant professor of Radiodiagnosis, Faculty of medicine Ain shams University, for her patience, care and concern throughout this work, providing this thesis with her scientific experience and constructive supervision.

Last, but not least, I would like to express my respect, appreciation and thanks to my wife, my family, and my professors.

Index of contents

SUBJECT	PAGE
I. Introduction and aim of work	1
II. Review of literature	
1. Anatomy of the colon and rectum	3
2. Pathology of colorectal cancer	36
3. Technique of MRI and DWI in colorectal cancer.	67
4. Manifestation of MRI DWI in primary evaluation of colorectal cancer	84
5. Manifestations of MRI DWI in assessment of response to therapy of colorectal cancer	106
6. Patients and methods	119
7. Results	129
8. Case presentation	138
9. Discussion	153
10. Summary and conclusion	159
11.References	160
12. Arabic summary	١

List of tables

NUMBER	TABLE	PAGE
1	Malignant Morphologic Criteria and Lymph Node Size.	91
2	Mean ADC values in different tumor grades	133
3	Conventional (MRI) vs pathology in the studied group.	134
4	Diffusion vs pathology in the studied group.	135
5	ADC vs pathology in the studied group.	136
6	Diagnostic indices (sensitivity, specificity, PPV, NPV and efficacy) of MRI (conventional, DWI and ADC) in the studied group.	137

List of Figures

Number	Figures	Page
1	Anatomy of rectum	
2	Ano-rectal junction	
3	Arterial supply of rectum	
4	Nodal pathways of tumor spread in rectal cancer	
5	coronal section of the anal canal	12
6	Rectal tumor location in the craniocaudal direction	13
7	Retrorectal space. On the sagittal T2-TSE image	15
8	Rectosacral fascia. Sagittal T2-TSE image	16
9	Peritoneal reflection. Sagittal T2-TSE image	
10	Denonvillier's fascia on the sagittal T2-TSE image	
11	Mesorectum and mesorectal fascia. Para-axial view of a T2- TSE sequence	
12	Coronal turbo spin-echo T2-weighted MR image shows the normal anatomy of the rectum.	
13	Rectal wall layers on the para-axial heavily T2-weighted TSE image	21
14	Axial T2-weighted FSE (TSE) sequence of the pelvis depicting the layers of the rectal wall.	21
15	anatomy of the anal canal	23
16	anatomy of colon	25
17	Relations of ascending and transverse colon	27
18	Relations of descending colon	28
19	arterial supply of colon	31
20	venous drainage of colon	32
21	lymphatic drainage of colon	33
22	MRI anatomy of colon	35
23	histological layering of the rectal wall	52
24	Illustration depicts the anatomy of the rectum and the	53
	possible locations of rectal cancer, along with corresponding T	
	categories and potential tumor sizes for each location.	
25	Illustrations of the anatomy of the rectum depict various	63
	surgical techniques used to treat rectal cancer.	
26	Simplified workflow of the management of localized rectal	64
_	cancer.	
27	Pelvic phased array coils	68
28	High-resolution Turbo Spin Echo T2-weighted scans on sagittal and axial plane show T2-stage low rectal cancer.	71

List of Figures

	O	
29	High-resolution TSE T2-weighted scans on sagittal and axial	72
	plane show intramural rectal cancer with distention of rectal	
	lumen	
30	Typical sequences used for MRC	75
31	Diffusion of water molecules	77
32	schematic drawing of measuring water diffusion	79
33	Mucinous and nonmucinous tumors. Axial oblique T2-	85
	weighted MR images in two different patients	
34	Rectal MR images show distinct tumor stages obtained from	87
	three different patients.	
35	Tumor in the lower rectum	88
36	Sagittal T2-weighted MR images in two different patients	90
	show signs of EMVI	
37	MRC shows that fecal material can be accurately	93
	differentiated from polyps.	
38	MRC shows rectal polyp	93
39	Rectal cancer in a 59-year-old female patient. (A) Axial T2WI	95
	showed focal thickening of rectal wall. (B) Axial DWI of the	
	same plane revealed focal markedly hyper intense area.	
40	Rectal cancer in a 51-year-old female patient. (A) Axial T2WI	95
	showed slight focal thickening of rectal wall, which were	
	misinterpreted as no cancer (B) Axial DWI of the same plane	
	demonstrated focal hyperintense area	
41	ADC measurement in tumors of different aggressiveness.	97
42	49-year-old man with adenocarcinoma of the ascending colon	98
43	An 81-year-old women with adenocarcinoma of the lower	99
	rectum. T2-weighted half Fourier single-shot turbo spin-echo	
	(HASTE) MR image in the transverse plane B. Diffusion-	
	weighted MR image in the transverse plane	
44	3DT1W GRE images for depiction of lymph nodes. B Nodes	101
	were scored as benign or malignant on standard T2W FSE	
	images. c Nodes were identified on DWI, D Nodal ADC was	
	calculated from the ADC map including b values 0, 500 and	
	1000 s/mm ²	
45	Diffusion-weighted MRI (DW-MRI) appearances of metastases	103
46	A 61-year-old woman with peritoneal carcinomatosis in CT,	105
	MRI and PET	
47	MPI tumor rograssian grada 2	100
	MRI tumor regression grade 3	108

List of Figures

113
115
115
115
113
118
126
129
130
131
131
132

List of abbreviations

MRI	Magnetic resonance imaging
DWI	Diffusion weighted images
ADC	Apparent diffusion coefficient
CRC	Colorectal carcinoma
CEA	Carcinoembryonic antigen
FOV	field-of view
ROI	Region of interest
CRs	complete responders
TN	true negative
FN	false negative
FP	false positive
TP	true positive
PPV	positive predictive value
NPV	Negative predictive value
EAS	External anal sphincter
IAS	Internal anal sphincter
FAP	Familial adenomatous polyposis
DCBE	Double-contrast barium enema
FOBT	Fecal occult blood test
FIT	Fecal immunochemical test

IFOBT	Immunochemical fecal occult blood test
AJCC	American Joint Committee on Cancer
5-FU	5-Flurouracil
Anti VEGF-A	Anti-vascular endothelial growth factor-A
Anti-EGFR	Anti-pidermal growth factor receptor antibodies
OS	Overall survival
SNR	Signal to noise ratio
CRM	Circumferential resection margin
EMVI	Extramural Vascular Invasion
MRC	Magnetic resonance colonography
MDCT	Multidetector computed tomography
PET	Positron emission tomography
18FDG-PET/CT	18 fluoro-deoxy-glucose positron emission tomography computed tomography
CRT	Chemoradiotherapy
mrTRG	MRI tumor regression grade
RECIST	Response Evaluation Criteria in Solid Tumors
TME	Total mesorectal excision
MRF	Mesorectal fascia

INTRODUCTION

Primary colorectal carcinoma (CRC) is a common cancer and one of the deadliest tumors in the whole world. The risk increases with age with almost three-quarters of cases seen in people aged 65 or more. Other risk factors include obesity, family history, cigarette smoking and chronic inflammatory bowel disease. (Taylor and plumb, 2015)

It is known that over half of all CRCs arise within the sigmoid colon or the rectum; the rectum alone accounts for one-third of cases. Overall 5-year survival is about 50%. The main prognostic factors include local tumor stage, lymphatic or vascular invasion, tumor differentiation (grade) and preoperative assessment of carcinoembryonic antigen (CEA). (Taylor and plumb, 2015)

Rectal cancer and colon cancer are currently treated slightly in different ways. The main treatment for both is surgical excision, but in the rectum it is more difficult to get adequate clearance margins to prevent local recurrence whilst avoiding significant complications. The pelvic position and static nature of the rectum, however, make it amenable to chemoradiotherapy that has been shown to reduce local recurrence in later-stage disease. (Kim et al., 2009)

Diffusion-weighted MRI (DWI) is a functional MRI that uses differences in the extracellular movement of water proton to discriminate between tissues of varying cellularity. In tissue with normal cellularity, water protons can diffuse freely which result in loss of signal on DWI, while in tissue with increased cellularity (Tumor) the diffusion of water is restricted resulting in high signal on DWI. (Lambregts et al., 2011)

Since apparent diffusion coefficient (ADC) of tumor's water content can show the extent of necrosis, a correlation of ADC with response to treatment can be done. (Dzik-Juraszet al., 2002).

Aim of the work

The purpose of this study is to show the role of diffusion weighted MRI (DWI) in initial assessment and grading of colorectal carcinoma and evaluation of its response to chemoradiotherapy.