

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

USING NEW TECHNOLOGICAL METHODS IN DEFINING SAFE RANGES FOR ELECTROMAGNETIC RADIATIONS IN BUILT ENVIRONMENT

Submitted By

Azza Ghazy Ibrahim Azzam

B. Sc. Of Electronics and Computer Engineering, Higher Technological Institute,

Tenth of Ramadan, 1997

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences
Faculty of Graduate Studies & Environmental Research
Aim Shams University

APPROVAL SHEET

USING NEW TECHNOLOGICAL METHODS IN DEFINING SAFE RANGES FOR ELECTROMAGNETIC RADIATIONS IN BUILT ENVIRONMENT

Submitted By Azza Ghazy Ibrahim Azzam

B.Sc. of Electronics & Computer Engineering ,Higher Technological Institute, Tenth of Ramadan, 1997

Master in Environmental Sciences, Faculty of Graduate Studies and Environmental Research, Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences
Department of Environmental Engineering Sciences

Signature

This thesis was discussed and approved by:
Name

1-Prof. Dr. Ibrahim Al-Desouky Helal

Prof. of Power & Electric, Machines Department Faculty of Engineering Ain Shams University

2-Prof. Dr. Magda Ekram Ebaid (Dead)

Prof. of Environmental Architecture
Faculty of Environmental Studies & Research
Ain Shams University
Dean of Al-Obooar Higher Engineering & Technology II

Dean of Al-Obooar Higher Engineering & Technology Institute

3-Prof. Dr. Abd El-All Hassan Ismail Mantawy

Emeritus Prof. of Power & Electric, Machines Department Faculty of Engineering

Ain Shams University

4-Prof. Dr. Hesham Mahmoud Aref

Prof. of Architecture & Housing Faculty of Engineering Fayoum University

2021

USING NEW TECHNOLOGICAL METHODS IN DEFINING SAFE RANGES FOR ELECTROMAGNETIC RADIATIONS IN BUILT ENVIRONMENT

Submitted By

Azza Ghazy Ibrahim Azzam

B. Sc. Of Electronics and Computer Engineering, Higher Technological Institute, Tenth of Ramadan, 1997

Master in Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences

Under The Supervision of:

1- Prof. Dr. Ibrahim Al-Desouky Helal

Professor in Power and Electric Machines Department Faculty of Engineering, Ain Shams University

2- Prof. Dr. Magda Ekram Ebaid

Professor of Architecture – Faculty of Graduate Studies and Environmental Research - Ain Shams University Dean of Al-Obour Higher Engineering and Technology Institute Al-Obour City

2021

Acknowledgment

To my Guardian, my Angel, my continous source of power and energy

My Mother Dr. Eng. Nadia Anas Kenawy

To Prof. Dr. Ibrahim Al-Desouky Helal and Prof. Dr. Magda Ikram Ebeid

The best supporting, helping supervising team ever

To my main source of help, support and advice ... The Former Deputy of the General Organisation for physical Planning ... *Eng. Shawky Shaaban*

To my loving and supporting family

Eng. Mohamed Yassine

Kareem M. Yassine & Nada M. Yassine

To my Brother ... *Dr. Eng. Ahmed Azzam*And his sweet helping and encouraging family

Eng. Rabab Ibrahim and my little angels Nadine, Farah and Hana

And Finally to my supporting work collegues who helped me so much during the practical measurements stage and especially to ...

Eng. Ahmed Abdel Hady

Abstract

This study aims to determine the safe range of exposure to the electromagnetic fields surrounding the human being. This objective requires studying and determining the environmental and health impacts resulting from exposure to the most dangerous sources of electromagnetic fields which are medium voltage transformers present in various residential, service and commercial areas. The results will help decision-makers in proposing solutions that lead to reducing health effects

In this study our goal is to prevent all health and environmental effects of electromagnetic fields created by medium voltage transformers. The following steps are the major steps to achieve our goal:

- 1. Definition of electromagnetic fields, their properties and sources, especially medium voltage sources, and the use of previous studies in that field. It is worth noting that previous studies in this field were not available in the same quantity of studies of high voltage sources or radio paths (mobile phone).
- 2. Study the effect of electromagnetic fields of various frequencies on the environment and public health in general. Also, measure the health and environmental effects of fields around medium voltage transformers and also introduce international standards for exposure to these fields. To achieve this, an EMF Magnetometer was used to obtain several measurements varied depending on the loads loaded on these transformers.
- 3. While performing the measurements, it was noticed that there was a decrease in the values of the measurements around the transformers in the rooms which had doors made with tin. The measurements were repeated in some locations using the galvanized tin sheet thickness of 1 mm at the available distances in the different rooms. A comparison was made between the original measurements and the measurements made using galvanized tin sheet. Therefore, the study came up with several proposals to achieve the study's goals.

Table of Contents

Acknowledgment	IIW
Abstract	V
Table of Contents	VI
List of Figures	IX
List of Tables	XI
Chapter 1 – Introduction	1
1-1 Phenomenon	1
1-2 Objective	3
1-3 Methodology	4
1-4 Thesis Structure	4
Chapter 2 - Electromagnetic Radiations	6
2-1 Electromagnetic radiations	6
2-2 Electromagnetic fields	6
2-2-1 Definition	6
2-2-2 Frequency ranges of electromagnetic fields	7
2-2-3 Sources of electromagnetic fields	11
2-2-4 Units of measurements	13
2-2-5 Properties	13
2-2-6 Electromagnetic Field theory and calculations	14
Chapter 3: Electromagnetic fields Effects on Health and Environment	28
3-1 Effect of ELF and VLF EM Radiation	28
3-2 Effect of Radio Frequency Radiation	29
3-3 Effect of Microwave Radiation	34
3-4 Effects of Infrared (IR)	35
3-5 Effects of Optical radiation (Ultraviolet, Visible and Infrared Light)	35
3-6 Effect of X-Rays, Gamma Rays and Other Nuclear/Cosmic Rays	36
3-7 Standards Safe limits of exposure to electromagnetic fields	38

Chapter 4: Literature – Previous Studies	39
4-1 Bangladesh	39
4-2 Bulgaria	41
4-3 Nigeria	46
4-4 Iran - Effects of electromagnetic waves on blood cells of 100 factory workers	47
4-5 Iran - Educational hospitals of Hamadan University of Medical Sciences	50
4-6 Romania	55
<u>Chapter 5 : Practical Measurements of Electromagnetic Radiation In Meduim Voltage Transformers Units</u>	61
	<i>(</i> 1
5-1 Materials	61
5-2 Methods	62
5-3 Site Measurements	63
5-3-1 Extension of Tokh water supply station	63
5-3-2 Orascom Tank water supply station - 6 th October city	65
5-3-3 6 th October Irrigation water station	69
5-3-4 Maadi water supply station	71
5-3-5 New Cairo Water Intake	77
5-3-6 North Helwan water supply station	79
5-3-7 Tebien water supply station	81
5-3-8 Famous Sports Club	85
5-3-9 Faculty of Graduate Studies and Environmental Researches	87
<u>Chapter 6 : Practical Method for Metigation of the Electromagnetic Radiation</u> <u>Effects</u>	90
6-1 Extension of Tokh water supply station	91
6-2 Orascom Tank water supply station - 6 th October city	93
6-3 6 th October Irrigation water station	96
6-4 Maadi water supply station	97
6-5 North Helwan water supply station	100

<u>Chapter 7: Results and Recommendations</u>	101
7-1 At the general level	101
7-2 At the study level	102
Summary	1104
Refrences	105
Appendix	
Appendix 1 : Concepts and definitions	110
Appendix 2: Law of Electricity – Law 87 in 2015 – article 55	114
الملخص	
المستخلص.	

List of figures

Fig no.		Page
Fig 1.1	Placing transformers and heavy current switch boards in rooms inside buildings	2
Fig 2.1	Frequency ranges of electromagnetic fields.	7
Fig 2.2	The amount of penetration of UV relative to altitude in Earth's ozone	10
Fig 2.3	Linearly polarized wave oscilating from left to right	14
Fig 2.4	Charges flowing inside a conductor	20
Fig 2.5	The force interaction between a conductor with current (I) and charge (q) moving with speed (v)	22
Fig 2.6	Field lines tend to flow inside iron: the cases of an open and a toroidal shape	24
Fig 2.7	Small battery to a portable lamp	25
Fig 2.8	Simple circuit explains Faraday's Law	26
Fig 2.9	Right Hand Law	26
Fig 3.1	The electromagnetic radiation spectrum	28
Fig 3.2	Exposure of humans to RF energy from radio sites	31
Fig 3.3	Microwave communication tower	34
Fig 3.4	Visible light spectrum	35
Fig 4.1	Effects of electro-magnetic field on a human	42
Fig 4.2	The scheme of the transformer room	44
Fig 4.3-a	Magnitude field strength before application of the additional radiation reduction measures	45
Fig 4.3-b	Magnitude field strength after application of the additional radiation reduction measures	45
Fig 5.1	EMF Magnetometer	62
Fig 5.2	Location of the extension of Tokh water supply station	63
Fig 5.3	Extension of Tokh water supply station - Transformer room	63
Fig 5.4	Extension of Tokh water supply station - Transformer specifications	63
Fig 5.5	Extension of Tokh water supply station. Measurements at High Voltage side	64
Fig 5.6	Extension of Tokh water supply station. Measurements at Low Voltage side	64

Fig. No		Page
Fig 5.7	Location of Orascom Tank water supply station - 6 th October city	65
Fig 5.8	Orascom Tank water supply station -6^{th} October city - Transformer room - Transformer specifications	65
Fig 5.9	Orascom Tank water supply station -6^{th} October city $-$ Transformer room - Measurements at High Voltage side	66
Fig 5.10	Orascom Tank water supply station -6^{th} October city $-$ Transformer room - Measurements at Low Voltage side	66
Fig 5.11	Orascom Tank water supply station – 6 th October city – Control boards room. Board specifications	67
Fig 5.12	Orascom Tank water supply station -6^{th} October city $-$ Control boards room. Measurements at the Back side	68
Fig 5.13	Orascom Tank water supply station -6^{th} October city $-$ Control boards room. Measurements at the Front side	68
Fig 5.14	Location of 6 th October Irrigation water station	69
Fig 5.15	6 th October Irrigation water station. Transformer specifications	69
Fig 5.16	6 th October Irrigation water station. Measurements at High Voltage side	70
Fig 5.17	6 th October Irrigation water station. Measurements at Low Voltage side	70
Fig 5.18	Location of Maadi water supply station	71
Fig 5.19	Maadi water supply station- Intake transformer 1. Transformer room	71
Fig 5.20	Maadi water supply station- Intake transformer 1. Transformer specifications	71
Fig 5.21	Maadi water supply station- Intake transformer 1. Measurements at High Voltage side	72
Fig 5.22	Maadi water supply station- Intake transformer 1. Measurements at Low Voltage side	72
Fig 5.23	Maadi water supply station- Intake transformer 2. Measurements at High Voltage side	73
Fig 5.24	Maadi water supply station- Intake transformer 2 Measurements at the Low Voltage side	73
Fig 5.25	Maadi water supply station- Intake control board - Transformer specifications	74
Fig 5.26	Maadi water supply station- station transformer. Transformer room	75
Fig 5.27	Maadi water supply station- station transformer specifications	75
Fig 5.28	Maadi water supply station- station transformer. Measurements at High Voltage side	76

Fig. No		<u>Page</u>
Fig 5.29	Maadi water supply station- station transformer. Measurements at Low Voltage side	76
Fig 5.30	Location of New Cairo Water Intake	77
Fig 5.31	New Cairo Water Intake - Transformer room	77
Fig 5.32	New Cairo Water Intake transformer specifications	78
Fig 5.33	New Cairo water intake measurements at High Voltage side	78
Fig 5.34	New Cairo water intake measurements at Low Voltage side	78
Fig 5.35	Location of North Helwan water supply station	79
Fig 5.36	North Helwan water supply station transformer specifications	79
Fig 5.37	North Helwan water supply station. Measurements at High Voltage side	80
Fig 5.38	North Helwan water supply station. Measurements at Low Voltage side	80
Fig 5.39	Location of Tebien water supply station	81
Fig 5.40	Tebien water supply station. Intake transformer specifications	81
Fig 5.41	Tebien water supply station - Intake transformer Measurements at High Voltage side	82
Fig 5.42	Tebien water supply station - Intake transformer Measurements at Low Voltage side	
Fig 5.43	Tebien water supply station - Station transformer room	82
Fig 5.44	Tebien water supply station - Station transformer specifications	83
Fig 5.45	Tebien water supply station - Station transformer Measurements at High Voltage side	83 84
Fig 5.46	Tebien water supply station - Station transformer Measurements at Low Voltage side	84
Fig 5.47	Location of A Famous Sports Club	85
Fig 5.48	Famous Sports Club - Transformer room	85
Fig 5.49	Famous Sports Club - Transformer specifications	85
Fig 5.50	Famous Sports Club - Measurements at the High Voltage side	86
Fig 5.51	Famous Sports Club - Measurements at Low Voltage side	86

Fig.No.		Page
Fig 5.52	Location of Environmental studies and researches institute	87
Fig 5.53	Faculty of graduate studies and environmental researches – Transformer room and Transformer specifications	87
Fig 5.54	Faculty of graduate studies and environmental researches – Transformer room - Measurements at High Voltage side	88
Fig 5.55	Faculty of graduate studies and environmental researches – Transformer room - Measurements at Low Voltage side	88
Fig 5.56	Faculty of graduate studies and environmental researches – Control board room and Board specifications	89
Fig 5.57	Faculty of graduate studies and environmental researches – Control boards room - Measurements at Low Voltage side	89
Fig 6.1	Extension of Tokh water supply station – Layout	91
Fig 6.2	Extension of Tokh water supply station - Measurements at 2m distance in Low Voltage side	92
Fig 6.3	Extension of Tokh water supply station - Measurements at 2m distance in the transformer's left side	92
Fig 6.4	Orascom Tank water supply station – 6 th October city – Transformer room – Layout	93
Fig 6.5	Orascom Tank water supply station – 6 th October city – Transformer room - Measurements at 1.5 distance at Low Voltage side	93
Fig 6.6	Orascom Tank water supply station – 6 th October city – Control boards room – Layout	94
Fig 6.7	Orascom Tank water supply station – 6 th October city – Control boards room - Measurements at 1.5 distance at Back side	95
Fig 6.8	Orascom Tank water supply station -6^{th} October city - Control boards room - Measurements at 1.5 m distance at Front side	95
Fig 6.9	6 th October Irrigation water station – Layout	96
Fig 6.10	6 th October Irrigation water station - Measurements at 1.5 m distance at low voltage side	96
Fig 6.11	Maadi water supply station - Intake transformer 1 – Layout	97
Fig 6.12	Maadi water supply station - Intake transformer 1 - Measurements at 2 m distance at low voltage side	97
Fig 6.13	Maadi water supply station - Intake transformer 2 – Layout	98
Fig 6.14	Maadi water supply station - Intake transformer 2 - Measurements at 2 m distance at the low voltage side	98