

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY Faculty of Computer & Information Sciences Computer Science Department

Improving Convolutional Neural Networks Learning Through Adaptation

Thesis submitted to the Department of Computer Science
Faculty of Computer and Information Sciences
Ain Shams University, Egypt
In partial fulfillment of the requirements for the master's degree of
Computer and Information Sciences

Submitted by:

Zainab Mohamed Fouad Ibrahim B.Sc. of Computer Science,

Teaching Assistant, Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University.

Under Supervision of:

Prof. Dr. Abdel-Badeeh Mohamed Salem

Professor of Computer Science Faculty of Computer and Information Sciences, Ain Shams University.

Prof. Dr. Mohamed Ismail Roushdy

Professor of Computer Science Faculty of Computer and Information Sciences, Ain Shams University. Dean of Faculty of Computer and Information Technology, Future University in Egypt.

Dr. Marco Alfonse Tawfik

Lecturer in the Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University.

Table Of Contents

		Page
Ack	knowledgmentiii	
	stractiv	
	t of Publicationsvi	
	t of Figuresvii	
	t of Tablesviii	
	t of Albanaistians ix	
LIS	t of Abbreviationsx	
1	Introduction	
	1.1 Thesis Motivation3	
	1.2 Thesis Objectives	
	1.3 Thesis Methodology3	
	1.4 Thesis Contribution4	
	1.5 Thesis Organization4	
2	Overview of Convolution Neural Networks	
-	2.1 Pattern recognition background6	
	2.2 Machine learning background	
	2.2.1 ML and deep learning10	
	2.2.2 ML and AI11	
	2.2.3 How ML works11	
	2.2.4 ML methods12	
	2.3 CNN Structure	
	2.4 CNN Architectures21	
	2.5 CNN Applications22	
3	Related Works	
	ALVANOVA II VAINO	
	3.1 Automatic design of CNN model25	
	3.2 CNN enhancement methods	
	3.3 CNN hyper-parameters optimization methods40	
	3.4 Discussion 45	

4	Hyper-Parameter Optimization of Convolutional Neural		
Net	work Based on Particle Swarm Optimization Algorithm		
	 4.1 Swarm Intelligent Algorithms		
5	Experiments and Results		
	5.1 Experimental Methodology54		
	5.2 Experimental Results56		
6	Conclusions and Future Work		
	6.1 Conclusions59		
	6.2 Future Work60		
Re	eferences61		

Acknowledgment

Thanks merciful GOD for all your gifts in my whole life. I would like to thank my supervisors Professor Dr. Abdel-badeeh Salem, Professor Dr. Mohamed Roushdy, and Dr. Marco Alfonse who really supported and guided me greatly through the development of my Master's and offered me their precious time with experience and advice.

Thanks to all my colleagues and all my friends at the Department of Computer Science.

Finally, with all my appreciation and love that no words can express, I dedicate this Master to my dear parents, my beloved husband Dr.Islam, and my sons Ammar and Youssef who always provided me with love, prayers, blessings, advice and care. They are behind any success in my life.

Abstract

Recently, Convolution Neural Network (CNN) has accomplished great success in numerous issues of machine learning. Many machine learning methods have been developed for such objectives, for example, Artificial Neural Network (ANN), logistic regression, Support Vector Machine (SVM), deep learning, etc.

Deep learning (specifically CNN) is one of the strategies by which can delude the challenges of the feature extraction process. Usually, deep learning models are capable of extracting the proper features by themselves. Also, deep CNN models are usually designed manually and the key parameters of it are decided by experience and repeated tests which incredibly limit the applications of deep CNN.

Therefore, it is a great challenge to design the proper deep CNN model and reduce the dependence on manual involvement and expertise. So, this thesis will discuss the improvement of the convolution neural network design from different aspects with various methods. The CNN improvements include how to automatically design CNN model without operator intervention, change on convolution or pooling layers, adding some features to save the computational resources, and how to use adaptive and optimized CNN parameters.

On the other side, many hyper-parameters of the CNN can affect the model performance. These parameters are depth of the network, numbers of convolutional layers, numbers of kernels with their sizes. Therefore, it may be a huge challenge to design an appropriate CNN model that uses optimized hyper-parameters.

In this thesis, a design architecture method for CNNs is proposed by utilization of Particle Swarm Optimization (PSO) algorithm to learn the optimal CNN hyper-parameters values.

In the experiment, MNIST (Modified National Institute of Standards and Technology) database of handwritten digit recognition was used. The experiments appear that the proposed approach can find an architecture that is competitive to the state-of-the-art models with a testing error of 0.87%.

List of Publications

- 1. Zainab Fouad, Marco Alfonse, Mohamed Roushdy and Abdel-Badeeh M. Salem, "Improving the Design of Convolution Neural Network Architecture: Enhancement Methods, Applications and Challenges", proceeding of the 10th International Conference on Applied Internet and Information Technologies AIIT 2020, pp. 289-295. (Indexed in Scopus)
- 2. Zainab Fouad, Marco Alfonse, Mohamed Roushdy and Abdel-Badeeh M. Salem, "Hyper-parameter optimization of convolutional neural network based on particle swarm optimization algorithm", Journal of Bulletin of Electrical Engineering and Informatics, Vol 10, No 6: December 2021, pp. 3377-3384. (Indexed in Scopus)
- 3. Zainab Fouad, Marco Alfonse, Mohamed Roushdy and Abdel-Badeeh M. Salem, "Survey of Convolutional neural network hyper-parameters optimization methods", International Journal of Intelligent Computing and Information Sciences. (Accepted)

List of Figures

Figure	Page
Figure 2.1	English pattern6
Figure 2.2	The root of plants and human stomach patterns7
Figure 2.3	DNA and Protein pattern7
Figure 2.4	Speech signals8
Figure 2.5	EGK signal8
Figure 2.6	Texture patterns9
Figure 2.7	Faces and Fingerprints patterns9
Figure 2.8	CNN Example14
Figure 2.9	The building blocks of CNNs15
Figure 2.10	Convolution Step
Figure 2.11	The more convolution layers will get more complex features.17
Figure 2.12	Depth in convolution step17
Figure 2.13	The ReLU operation18
Figure 2.14	Max Pooling19
Figure 2.15	Fully Connected Layer20
Figure 3.1	Automatic design of CNN model26
Figure 3.2	The model of incremental learning30
Figure 3.3	The NIN model31
Figure 3.4	The distinction between straight convolutional layer and mlpconv
layer	31
Figure 3.5	The dynamic filter module32
Figure 3.6	Example of the downside of max and average pooling33
Figure 3.7	The ADCNN model34
Figure 3.8	The Multi-Scale Convolutional Networks Architecture35
Figure 3.9	The Spatial transformer module
Figure 3.10	The flowchart of Albelwi and Mahmood framework42
Figure 4.1	Proposed method flowchart51
Figure 5.1	Sample of MINST database54
Figure 5.2	Training accuracy during the optimization process56

List of Tables

Table		Page	
Table 2.1	Recent CNN applications	22	
Table 3.1	Automatic design of CNN Model	27	
Table 3.2	CNN Enhancement Methods	37	
Table 3.3	CNN hyperparameter optimization methods	44	
Table 5.1	Experiments parameters	55	
Table 5.2	Comparison of MINST classification error of state of art m	ethods.57	

List of Algorithms

Algorithm		
Algorithm 4.1	Artificial Bee Colony	49
Algorithm 4.2	Particle Swarm Optimization	50
Algorithm 4.3	CNN integration with particle swarm optimization	52

List of Abbreviations

Abbreviation	Definition
ABC	Artificial Bee Colony
ACNN	Adaptive Convolutional Neural Network
ACO	Ant Colony Optimization
ADCNN	Adaptive Deep Convolutional Neural Network
AFSO	Artificial Fish Swarm Optimization
ANN	Artificial Neural Network
BA	Bat Algorithm
BFO	Bacterial Foraging Optimization
CGP	Cartesian Genetic Programming
CNN	Convolutional Neural Network
DPSO	Distributed PSO
FA	Firefly Algorithm
GA	Genetic Algorithms
НВМО	Honeybee Mating Optimization
HDNN	Hybrid Deep CNN
HENet	Highly Efficient Convolutional Neural Networks
HORD	Hyper-Parameter Optimization via RBF and Dynamic coordinate search
LDWPSO	linearly decreasing weight PSO
MAE	Mean Absolute Error

MINST	Modified National Institute of Standards and
	Technology
) // ()	
ML	Machine Learning
MSE	Mean Square Error
NIN	Network in Network
NMM	Nelder-Mead Method
PSO	Particle Swarm Optimization
RBF	Radial Basis Function
ReLU	Rectified Linear Unit
SaCNN	Scale adaptive CNN
SI	Swarm Intelligence
SVM	Support Vector Machine