

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Zoology Department

Impact of some phenolic compounds on the freshwater snail, *Biomphalaria* alexandrina, and the Nile tilapia *Oreochromis niloticus*

"A Thesis submitted for the degree of Doctor of Philosophy in Science in Zoology"

Ву

Sara Ali Mansour Moustafa

To

Zoology Department

Faculty of Science - Ain Shams University

Supervised by

Prof. Magdy Tawfik Khalil

Prof. Fatma Afifi Ali El-Deeb

Emeritus Professor of Aquatic Ecology Zoology Department Faculty of Science Ain Shams University Emeritus Professor of Environmental Research Environmental Research and Medical Malacology Department Theodor Bilharz Research Institute

Prof. Fawzia Ashour Abd El-Ghafar Abd El-Rahman

Professor of Vertebrates and Fish Biology Zoology Department Faculty of Science Ain Shams University

2021

Zoology Department Faculty of Science Ain Shams University

Approval Sheet

Title of Thesis:

Impact of some phenolic compounds on the freshwater snail, *Biomphalaria alexandrina*, and the Nile tilapia *Oreochromis niloticus*.

Name of Candidate: Sara Aly Mansour Moustafa

This thesis has been approved for submission by

Thesis supervisors:

Signature

1. Prof. Fatma Afifi Ali El-Deeb

Emeritus Professor of Environmental Research, Environmental Research Department, Theodor Bilharz Research Institute.

2. Prof. Magdy Tawfik Khalil

Emeritus Professor of Aquatic Ecology, Zoology Department, Faculty of Science, Ain Shams University.

3. Prof. Fawzia Ashour Abd El-Ghafar Abd El-Rahman

Professor of Vertebrates and Fish Biology, Zoology Department, Faculty of Science, Ain Shams University.

Examiners committee:

1. Prof. Nahla Soliman El-Shenawy

Professor of Physiology, Zoology Department, Faculty of Science, Suez Canal University.

2. Sahar Fahmy Youssef Mehanna

Professor of Fish Population Dynamics and fish stock assessment, National Institute of Oceanography and Fishers.

3. Prof. Fatma Afifi Ali El-Deeb

Emeritus Professor of Environmental Research, Environmental Research Department, Theodor Bilharz Research Institute

4. Prof. Magdy Tawfik Khalil

Emeritus Professor of Aquatic Ecology, Zoology Department, Faculty of Science, Ain Shams University

Head of Zoology Department

Zoology Department Faculty of Science Ain Shams University

Title of Thesis:

Impact of some phenolic compounds on the freshwater snail, *Biomphalaria* alexandrina, and the Nile tilapia Oreochromis niloticus.

Name of Candidate: Sara Aly Mansour Moustafa

Supervisors: Signature

Prof. Fatma Afifi Ali El-Deeb

Emeritus Professor of Environmental Research

Environmental Research Department

Theodor Bilharz Research Institute

Prof. Magdy Tawfik Khalil

Emeritus Professor of Aquatic Ecology

Zoology Department

Faculty of Science, Ain Shams University

Prof. Fawzia Ashour Abd El-Ghafar Abd El-Rahman

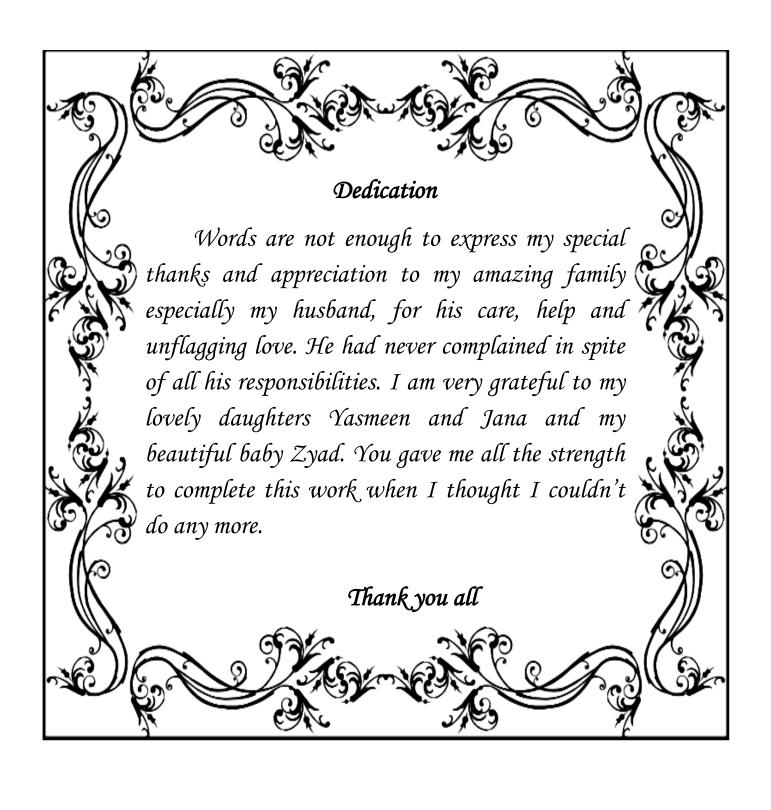
Professor of Vertebrates and Fish Biology

Zoology Department

Faculty of Science, Ain Shams University

Head of Zoology Department

Acknowledgement


First and foremost praise goes to Allah, the beneficent and merciful, the best owner of all knowledge, Who has taught Adam the 'names', and the Teacher of all teacher, for providing me the blessings to accomplish this thesis.

Great thanks to my teacher **Prof. Fatma Afifi Ali El Deeb**, Professor of Environmental Research, Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, for her supervision, help, guidance, patience, encouragement and constructive criticism. Her continued support has led me to the right way.

I can't adequately express in word my appreciation and thanks to my supervisor **Prof. Magdy Tawfik Khalil**, Emeritus Professor of Aquatic Environment, Zoology Department, Faculty of Science, Ain Shams University, for his guide and generous support during progress of work, revising the manuscript, valuable advice, helpful discussion, time and great effort spent throughout the course of this study and without his efforts the research would not be completed.

I would like to express my gratitude to **Prof. Fawzia Ashour Abd El-Ghafar Abd El-Rahman**, Professor of Vertebrates and Fish Biology, Zoology Department, Faculty of Science, Ain Shams University, not only for encouragement and genuine interest, but also for removing the obstacles that face me during progress of this manuscript.

All thanks to the staff members of Environmental Research and Medical Malacology Department, Theodor Bilharzia Research Institute and to all my friends for their help.

	CONTENTS	Page
1.	Introduction and aim of work	1
2.	Review of literature	4
3.	Material and methods	26
	General principle	26
	3.1. Materials	27
	3.1.1. Chemicals materials; phenol and NPEO 9	27
	3.1.2. Biological materials; <i>B. alexandrina</i> and the <i>O. niloticus</i>	27
	I: Field study	28
	3.2. Sites of investigation	28
	I: Al-Giza governorate (River Nile)	33
	II: El-Dakahlia governorate (Al-Manzala Lake)	33
	III: Port-Said governorate	34
	3.3. Snail collection.	34
	3.4. Detection of water quality	35
	3.4.1. Physico-chemical parameters of water	35
	3.4.2. Phenol and NPEO 9 concentrations in water	35
	3.4.2.1. Collection and preparation of water samples	35
	3.5. The Nile tilapia <i>O. niloticus</i> fish	36
	3.5.1. Fish collection.	36
	3.5.2. Preparation of fish muscles	36
	3.6. HPLC analysis of phenolic content	36
	3.7. Ecological risk assessment	37
	3.8. Human health risk assessment	37
	II: Laboratory study	38
	3.9. Toxicity screening	38
	3.10. Experimental procedure	39
	3.10.1. Design of experiments	39
	3.10.1.1. B. alexandrina snails	39
	3.10.1.2. <i>O. niloticus</i> fish	39
	3.10.2. Evaluation of some biochemical bio-markers on	40
	B. alexandrina snails and O. niloticus fish	
	3.10.2.1. Collection of snail's hemolymph	40
	3.10.2.2. Collection of fish's blood	40
	3.10.2.3. Determination of total protein level	41
	3.10.2.4. Determination of albumin level	41
	3.10.2.5. Calculation of globulin level and albumin/globulin	42
	ratio	

	3.10.2.6. Determination of aspartate and alanine	42
	aminotransferase activity	42
	3.10.2.7. Determination of alkaline phosphatase activity	43
	3.10.2.8. Determination of acid phosphatase activity	43
	3.10.2.9. Determination of urea	44
	3.10.2.10. Determination of creatinine	44
	3.10.2.11. Antioxidant enzymes	44
	3.10.2.11.1. Preparation of snails' tissue homogenates	44
	3.10.2.11.2. Preparation of fish tissue homogenates	45
	3.10.2.11.3. Determination of glutathione peroxidase (GPx)	45
	3.10.2.11.4. Determination of superoxide dismutase (SOD)	45
	3.10.2.11.5. Determination of catalase assay (CAT)	46
	3.10.2.12. Determination of total protein and free amino acids	
	content of tissues of B. alexandrina snails and muscles	46
	of O. niloticus fish	
	3.10.2.12.1. Determination of total protein	47
	3.10.2.12.1.1. Tissue preparation of snails	47
	3.10.2.12.1.2. Tissue preparation of fish	47
	3.10.2.12.2. Determination of free amino acids content	47
	3.10.2.12.2.1. Extraction procedures	48
	3.10.2.12.2.2. HPLC conditions	48
	3.10.3. Protein analysis by SDS-PAGE	49
	3.10.3.1. SDS-PAGE of the snail proteins	49
	3.10.3.2. SDS-PAGE of the fish proteins	49
	3.10.3.3. Electrophoretic analysis of soluble tissue proteins	50
	3.3.3.4. Staining of the gels	50
	3.3.3.5. Gel analysis	51
	3.11. Effect of exposure to phenol and NPEO 9 on body indices of	
	O. niloticus as hepatosomatic index (HSI), gonadosomatic	51
	index (GSI) and condition factor (K-Value)	
	3.12. Histopathological studies	52
	III: Data analysis	53
4.	Results And Discussion	56
	A. Field investigation	56
	4.1. Snail distribution	56
	4.2. physico-chemical parameters	59
	4.2.1. Water temperature	59
	4.2.2. Hydrogen ion concentration (pH)	60
	4.2.3. Electrical coductivity (EC)	60

4.2.4. Total dissolved solids (TDS)	60
4.2.5. Dissolved oxygen (DO)	60
4.3. Effect of environmental factors on the distribution of <i>B. alexandrina</i>	63
4.4. Occurrence and seasonal variation of phenol and NPEO 9 in water	66
4.5. Correlation analysis between investigated phenolic compounds in water (μg/L) and <i>B. alexandrina</i> snails	70
4.6. Occurrence and seasonal variation of phenol and NPEO 9 concentrations accumulated in <i>O. niloticus</i> fish	71
4.7. Risk assessment of phenol and NPEO 9	74
4.7.1. Ecological risk assessment of phenol and NPEO 9 in water	74
4.7.2. Human health risk assessment	77
B: Biomphalaria alexandrina snails	82
4.8. Evaluation the toxicity of phenol and nonylphenol ethoxylate 9 (NPEO 9) against <i>B. alexandrina</i> snails	83
4.9. The biochemical bio-markers	84
4.9.1. Effect of sub-lethal concentrations of phenol and NPEO 9 on the hemolymph biochemical analysis of the <i>B. alexandrina</i> snails	84
4.9.2. Influence of sub-lethal concentrations of phenol and NPEO 9 on some antioxidant enzymes of <i>B. alexandrina</i> snails' tissues	92
4.9.3. The impact of sub-lethal concentrations of phenol and NPEO 9 on total protein and amino acids contents in the tissue of <i>B. alexandrina</i> snails	95
4.9.4. Electrophoresis separation of tissue soluble protein from whole body of <i>B. alexandrina</i> snails	101
4.10. Histopathological studies	104
4.10.1. Digestive gland of <i>B. alexandrina</i> snails	105
4.10.2. Hermaphrodite gland of <i>B. alexandrina</i> snails	106
C. Oreochromis niloticus fish	90
ethoxylate 9 (NPEO 9) against the Nile tilapia <i>Oreochromis</i> niloticus	115
4.12. The biochemical bio-markers	116
4.12.1. Effect of phenol and NPEO 9 on the serum biochemical analysis of the <i>O. niloticus</i> fish	116
4.12.2. Efficiency of phenol and NPEO 9 against some antioxidant parameters in muscles of <i>O. niloticus</i> fish	127

List of contents

	4.12.3. Total protein and amino acids contents in muscles of <i>O. niloticus</i> fish exposed to sub-lethal concentrations of phenol and NPEO 9	130
	4.12.4. Electrophoresis separation of tissue soluble proteins from the skeletal muscles of <i>O. niloticus</i> fish	135
	4.13. The effect of phenol and NPEO 9 on body index and condition factor (K-value) of <i>O. niloticus</i> fish	140
	4.14. Histopathological studies	144
	4.14.1. Gills of <i>O. niloticus</i>	144
	4.14.2. Liver of <i>O. niloticus</i>	150
	4.14.3. Kidney of <i>O. niloticus</i>	156
5.	Conclusion and recommendation	160
6.	Summary	162
7.	References	169

	Table	Page
3.1	Instruments used in the present study	54
3.2	Chemicals used in the present study	55
4.1	Distribution of snails collected from selected sites during the study period (autumn, 2019-summer, 2020).	58
4.2	Annual mean and range values of physico-chemical parameters of water collected from investigated sites during (autumn, 2019-summer, 2020).	61
4.3	The correlation coefficient between physico-chemical parameters in the studied sites during the study period.	63
4.4	Phenolic compound concentration ranges and seasonal mean values of water in six sampling sites.	68
4.5	Correlation coefficient between distribution of <i>B. alexandrina</i> snails and phenolic compounds concentrations.	71
4.6	Phenolic compound concentration ranges and seasonal mean values of six sampling sites of <i>O. niloticus</i> fish.	72
4.7	Risk quotient values of phenol and NPEO 9 in water of investigated sites during the study period.	75
4.8	Hazard quotient of phenol and NPEO 9 in fish edible muscles of investigated sites during the study period.	78
4.9	Total hazard quotients of phenol and NPEO 9 in fish edible muscles of investigated sites during the study period.	80
4.10	Probit analysis of the toxic effect of phenol and NPEO 9 on the <i>B. alexandrina</i> snails.	83
4.11	Statistical analysis of the hemolymph parameters of <i>B. alexandrina</i> snails exposed to phenol and NPEO 9.	87
4.12	Changes in glutathione peroxidase, superoxide dismutase, and catalase enzymes in tissues of <i>B. alexandrina</i> snails after exposure to phenol (15 mg/L) and NPEO 9 (1.3 μ /L) for 4 weeks.	93
4.13	Tissue extracts content of total protein of <i>B. alexandrina</i> snails after exposure to phenol and NPEO 9 for 4 weeks.	96
4.14	Amino acid profile of <i>B. alexandrina</i> snails after exposure to phenol and NPEO 9 for 4 weeks.	99
4.15	Electrophoretic separation of tissue soluble protein from the whole body of <i>B. alexandrina</i> snails exposed to sub-lethal concentrations of phenol and NPEO 9 after 4 weeks of exposure.	102

	SDS-PAGE analysis of <i>B. alexandrina</i> tissue soluble proteins	
4.16	groups exposed to sub-lethal concentrations of phenol and	103
	NPEO 9 for 4 weeks.	
	Similarity index of different protein patterns of whole tissue	
4.17	extract of B. alexandrina snails after exposure four weeks to	103
	sub-lethal concentrations of phenol and NPEO 9.	
4.18	Probit analysis of the toxic effect of phenol and NPEO 9 on	115
7.10	the O. niloticus fish	113
4.19	Statistical analysis of the serum's parameters of O. niloticus	120
7.17	exposed to phenol and NPEO 9.	120
	Changes in superoxide dismutase, glutathione peroxidase and	128
4.20	Catalase enzymes in muscles of O. niloticus fish after	
7.20	treatment with phenol (2 mg/L) and NPEO 9 (10 μ /L) for 4	
	weeks.	
4.21	Muscle contents of total proteins of O. niloticus fish after	130
7.21	exposure to phenol and NPEO 9 for 4 weeks.	130
4.22	Free amino acids contents in muscles of <i>O. niloticus</i> fish	133
7.22	exposed to phenol and NPEO 9 after 4 weeks.	133
	Electrophoretic separation of tissue soluble protein from the	
4.23	muscle of O. niloticus fish exposed to sub-lethal	137
4.23	concentrations of phenol and NPEO 9 after 4 weeks of	137
	exposure.	
	SDS-PAGE analysis of <i>O. niloticus</i> muscle soluble proteins	
4.24	groups exposed to sub-lethal concentrations of phenol and	138
	NPEO 9 for 4 weeks.	
	Similarity index of different protein patterns of muscle extract	
4.25	of O. niloticus fish after exposure 4 weeks to sub-lethal	139
	concentrations of phenol and NPEO 9.	
4.26	Body index and condition factor of <i>O. niloticus</i> fish exposed to	142
7.20	phenol and NPEO 9.	174