

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Prevalence, Resistance profile & Virulence genes of *Streptococcus Agalactiae* Colonizing Near-Term Pregnant Women Attending Ain Shams University Hospital

Thesis

Submitted for Partial Fulfillment of M.D in Medical Microbiology and Immunology

By

Noha Gad Abdallah

Master Degree in Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University Under Supervision of

Prof. Dr. Faten Mostafa Ali

Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University

Prof. Dr. Lamiaa Abdelmoneim Adel

Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University

Dr. Walaa Abd El-Latif Ibrahim

Assistant Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed El-kotb

Lecturer of Obstetrics & Gynaecology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Faten Mostafa Ali**, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due **Prof. Dr. Lamina**Abdelmoneim Adel, Professor of Medical

Microbiology and Immunology, Faculty of Medicine,

Ain Shams University, for her sincere efforts, fruitful

encouragement.

I am deeply thankful to **Dr. Walaa Abd El-Latif Ibrahim**, Assistant Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

Really I can hardly find the words to express my gratitude to **Dr. Ahmed Mohamed El-kotb**, Lecturer of Obstetrics & Gynaecology, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Noha Gad Abdallah

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	4
Review of Literature	5
Materials and Methods	71
Results	86
Discussion	98
Summary	106
Conclusion	109
Recommendations	111
References	113
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
ACP	Alpha C protein
	. Alpha-like family of surface-expressed
Aips	proteins
ΔMD_{c}	Antimicrobial peptides
	Christie, Atkins, and Munch-Peterson
	Center for Disease Control and Prevention
	Clinical and Laboratory Standards
OLDI	Institute
CRM197	Cross-reacting material 197
	Cell-surface-associated serine protease A
-	Extracellular matrix
	Early onset disease
	Group B streptococcus
	Intrapartum antibiotic prophylaxis
	Late onset disease
LTA	
	Muller Hinton Agar
	Nucleic acid amplification tests
	Penicillin binding protein
	Polymerase chain reaction
	Streptococcal C5a Peptidase B
-	Superoxide dismutase
р	-

Tist of Tables

Table No.	Title	Page No.
Table 1:	Zones of inhibition of antibiotics	79
Table 2:	Personal and medical characterist cases	•
Table 3:	Comparison between GBS positive ar as regard age and gestational age	•
Table 4:	Relationship between parity and Camong cases	
Table 5:	Relationship between Previous about GBS result among cases	
Table 6:	Relationship between Previous pre and GBS result among cases	
Table 7:	Description of Antibiotic sensitivity : GBS cases	-
Table 8:	scpB and rib genes in positive GBS ca	ses95
Table 9:	Logistic Regression for studying in factors associated with Positive GBS	_

Tist of Figures

Fig. No.	Title	Page No.
Figure 1:	Classification of streptococci	7
Figure 2:	GBS growing in chains	8
Figure 3:	Blood agar plate with <i>streptococcus</i> and typical hemolytic zone around col	0
Figure 4:	Geographical distribution of the prevalent colonizing GBS serotypes ci	
Figure 5:	Ascending Group B Streptococc Infection	
Figure 6:	Schematic overview of GBS virulence	factors 14
Figure 7:	The CAMP test for Group B St. "Example A: positive - Strept. a (arrow shaped), Example B: negative Pyogens"	agalactiae e - Strept.
Figure 8:	Structure and degradation of hyaluro	nan20
Figure 9:	Two-component regulatory system	32
Figure 10:	Lifecycle of Group B Streptococci as a pathogen	
Figure 11:	Neonatal manifestations of g streptococcal disease	
Figure 12:	Regimens for intrapartum chemoprop group B streptococcal infection	
Figure 13:	Indication for intrapartum antibiopro	phylaxis 61
Figure 14:	CAMP test for the identification of Streagalactiae	
Figure 15:	Hippurate test:purple color is pos hippurate hydrolysis	
Figure 16:	Latex agglutination test	78

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 17:	Percent of GBS colonization among	cases87
Figure 18:	Comparison between GBS po negative as regard age and gestatio	
Figure 19:	Relationship between parity and among cases	
Figure 20:	Relationship between Previous al GBS result among cases	
Figure 21:	Relationship between Previous pr and GBS result among cases	
Figure 22:	Pink mauve colonies on CHROMaga	$ m ar^{TM}StrepB93$
Figure 23:	CAMP test on sheep blood	93
Figure 24:	Latex agglutination test result: -v left side, +ve resut on right side	
Figure 25:	Hippurate test result	93
Figure 26:	Description of Antibiotic sensitivity GBS cases	-
Figure 27:	scpB and Rib genes in positive GBS	cases95
Figure 28:	scpB and Rib genes in positive GBS	cases96

Introduction

▼ BS is detected in 10-30% of pregnant women as a colonizing agent in the vagina and/or rectum. The infants of these women may be at high risk of developing disease if they exposed to this bacteria before or after birth (Spellerberg, 2000; Edwards et al., 2011).

Early-onset infection, the most prevalent kind of newborn GBS disease, and late-onset infection are the two types of GBS infections in neonates. The early-onset infection occurs in neonates under the age of seven days, while the lateonset infection occurs in those aged seven to ninety days (Schuchat, 1998; Capan et al., 2012).

Intrapartum antibiotic prophylaxis (IAP) has been shown to interrupt the transmission of GBS from mother to infant & so reduce the incidence of early-onset GBS disease. Guidelines from the Federal Centers for Disease Control and Prevention (CDC) recommended two different strategies for the selection of candidates for IAP: either screening for GBS via obtaining rectovaginal cultures 35-37 weeks of gestation at identification of maternal clinical risk factors for early onset neonatal GBS disease & administer IAP to all cases showing any of these risk factors (Schrag et al., 2002; Verani et al., 2010).

GBS is still responsive to penicillin and most beta lactam antibiotics, but some investigations have found that GBS susceptibility to penicillin has decreased (Onipede et al., 2012).

Alternative antibiotics such as vancomycin, clindamycin, and erythromycin are given to pregnant women who are allergic to penicillin. Emerging clindamycin and erythromycin resistance strains have been found in several parts of the world, including Egypt (Shabayek & Abdalla, 2014).

However, available data suggests that erythromycin and clindamycin given to pregnant women may not reliably reach foetal tissues, and cefazolin may be a suitable alternative for patients who do not have a severe penicillin allergy (Verani et al., 2010).

GBS strains are able to cause infections not only because of the development of resistance but also due to their virulence traits. The most important virulence factor is capsule, but other virulence factors include; surface protein Rib & C5a peptidase (Sadowy et al., 2010).

A substantial percentage of GBS strains, that have caused invasive infections in newborns, have the invasin rib protein, which is generated by the *rib* gene (*Hannoun et al.*, 2009).

C5a peptidase is a surface enzyme that can deactivate the human complement component C5a. The *scpB* gene encodes it, and it may be horizontally transmitted between pyogenic

streptococci. C5a peptidase also makes GBS strains adhere to epithelial cells and extracellular matrix proteins easier (Lysakowska et al., 2011).

ScpB gene is used as a standard gene for checking prevalence rate of GBS in pregnant women via polymerase chain reaction (PCR) due to its high prevalence among GBS human isolates (*Rallu et al.*, 2006). Only strains with the scpB gene are thought to be infective to humans (Lysakowska et al., *2011*).

These virulence proteins have been studied as possible vaccine candidates due to their capacity to generate a strong protective immunity against GBS infections (Maione et al., 2005).

sensitivity of cultures in identifying The GBS colonisation ranges from 54-87%, results are acquired in 36 to 72 hours, and identification of colonies, which are not necessarily beta-hemolytic, requires an experienced technician (Mousavi et al., 2016).

Rapid methods of identifying GBS colonisation in pregnant women have been available in recent years, such as DNA probes and nucleic acid amplification tests (NAAT) like PCR, and they have become the primary method of research. PCR is said to be highly sensitive and specific, with results appearing in 30 to 45 minutes (Mousavi et al., 2016).

AIM OF THE WORK

The aim of this study was to determine the prevalence of GBS carriage among pregnant women, the antimicrobial susceptibility pattern of colonizing GBS isolates and check the presence of *scpB* & *rib* virulence genes.