

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Comparitive Study between Dexamethasone versus Fentanyl As Adjuvant to Local Anesthesia in Supraclavicular Nerve Block in Upper Limb Surgery

Thesis

Submitted for Partial Fulfillment of Master Degree in Anesthesia

By

Mohamed Abdelmaabod Abdelsatar

M.B.B.CH., Ain Shams University.

Under supervision of

Prof. Dr. Zakaria Abdelaziz Mostafa

Professor anesthelogist, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Alfred Maurice Said

Assistant Professor anesthelogesit, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Ahmed Abdeldayem Abdelhaq

Lecturer anesthelogsit, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALIAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Zakaria Abdelaziz Mostafa**, Professor anesthelogist, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. Alfred Maurice Said, Assistant Professor anesthelogist, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Abdeldayem**Abdelhaq, Lecturer anesthelogist, Intensive Care and Pain

Management Faculty of Medicine - Ain Shams University, for his

great help, active participation and guidance.

Mohamed Abdelmaabod

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
Upper Limb Innervation	4
Supraclavicular Brachial Plexus Block	27
Pharmacology of Bupivacaine	39
Dexamethasone	48
Fentanyl	60
Patients and Methods	64
Results	71
Discussion	98
Summary	112
Conclusion	114
References	115
Arabic Summary	_

List of Tables

Table No.	Title	Page No.
Table (1):	Muscular branches of the brachial ple	exus 11
Table (2):	Comparison between three groups demographic data and duration of sur	-
Table (3):	Comparison between group A&F according to mean arterial blood (mmHg).	pressure
Table (4):	Comparison between all groups acceptant rate (Beat/min).	cording to
Table (5):	Comparison between all groups onset of sensory block & onset of motoduration of sensory block and du motor block (min).	or block & ration of
Table (6):	Group A&F and D compared as postoperative visual analogue scale	
Table (7):	Comparison between control group ar group as regards the timing of a number and total amount of post rescue analgesics in 24 hours	analgesia, toperative
Table (8):	Comparison between two groups demographic data and duration of sur	•
Table (9):	Comparison between group F and D to mean arterial blood pressure (mmF	•
Table (10):	Comparison between group F and D to heart rate	_
Table (11):	Comparison between group F (fergroup D (dexamethasone) regarding sensory block & onset of motor duration of sensory block and du	onset of block & uration of
Tabla (19).	motor block (min).	93 95

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Brachial plexus anatomy		6
Figure (2):	The relations of the brachial plex the root of the neck and axilla		9
Figure (3):	A schematic plan of the brachial pand its branches		11
Figure (4):	Formation and the branches of brachial plexus		13
Figure (5):	Course and relationship of musculocutaneous nerve	the	
Figure (6):	The course and distribution of the nerve and its branches		16
Figure (7):	The course and distribution of median nerve and its branches		18
Figure (8):	The relations of the median nerve a wrist		19
Figure (9):	Axillary nerve and its branches is upper humerus	n the	
Figure (10):	Motor and sensory branches of axillary nerve	f the	
Figure (11):	Radial nerve in arm and nerve posterior shoulder		22
Figure (12):	Radial nerve in Forearm and terminal branches	d its	
Figure (13):	Upper extremity cutaneous, must bone and articular innervations	cular,	
Figure (14):	Sheath around the brachial plexus.		
Figure (15):	Supraclavicular block (classic appro Hand and syringe assembly position	oach):	

List of Figures Cont...

Fig. No.	Title Page	No.
Figure (16):	Supraclavicular block (plumb bob): functional anatomy	32
Figure (17):	Supraclavicular block (plumb bob): Parasagittal magnetic resonance image anatomy	32
Figure (18):	Supraclavicular block (plumb bob): paresthesia-seeking approach	33
Figure (19):	Supraclavicular block:technique basic functional anatomy	34
Figure (20):	Ultrasound imaging for supraclavicular block	36
Figure (21):	Ultrasound-guided supraclavicular block	37
Figure (22):	Chemical structure of bupivacaine	39
Figure (23):	Dexamethazone	49
Figure (24):	Fentanyl	60
Figure (25):	Age difference between all groups	72
Figure (26):	Sex difference between all group	72
Figure (27):	Mean arterial blood pressure readings among all groups.	74
Figure (28):	Heart rate readings among all groups	
Figure (29):	Comparison between all groups regarding onset of sensory block and onset of motor block (min).	
Figure (30):	Comparison between all groups regarding duration of sensory block and duration of motor block.	
Figure (31):	Postoperative VAS after 6hour	
Figure (32):	Postoperative VAS after 7 hour	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (33):	Postoperative VAS after 8 hour	82
Figure (34):	Postoperative VAS after 14hour	82
Figure (35):	Postoperative VAS after 20 hour	83
Figure (36):	Postoperative VAS after 24hour	83
Figure (37):	Showing the number of postoperarescue analgesia	
Figure (38):	Showing the total amount postoperative rescue analgesia	
Figure (39):	Comparison between two gr	_
Figure (40):	Comparison between two gr	
Figure (41):	Comparison between group F an according to mean arterial by pressure (mmHg)	d D blood
Figure (42):	Comparison between group F an according to heart rate	d D
Figure (43):	Comparison between Group F & G D regarding onset of sensory block onset of motor block (min).	and
Figure (44):	Comparison between Group F & G D regarding duration of sensory k and duration of motor block	olock
Figure (45):	Pain assessment (VAS) after 14hr	
Figure (46):	Pain assessment (VAS) after 20hr	
Figure (47):	Pain assessment (VAS) after 24hr.	

List of Abbreviations

Abb.	Full term
ACTH	Adrenocorticotropic hormone
ADRs	. Adverse drug reactions
ALT	. Alanine aminotransferase
ASA	. American Society of Anesthesiologist
AST	. Aspartate Aminotransferase
CAH	. Congenital adrenal hyperplasia
CNS	. Central nervous system
CVS	. Cardiovascular system
DHEAS	. De-hydroepiandrosterone sulfate
ECG	. Electrocardiogram
HACE	. High-altitude cerebral edema
HAPE	. High-altitude pulmonary edema
hCG	. Human chorionic gonadotropin
HR	. Heart rate
INR	. International Normalized Ratio
IV	. Intravenous
MBP	. Mean blood pressure
NIBP	. Non-invasive blood pressure
NS	. Normal saline
PACU	. Post-anesthesia care unit
PT	. Prothrombin time
PTT	. Partial thromboplastin time
SpO2	. oxygen saturation
VAS	. Visual analogue score

Introduction

rachial plexus blocks are among the most commonly performed peripheral nerve blocks for upper extremity surgeries in clinical practice. It offers many advantages over general anesthesia for upper limb surgeries such as sympathetic block, better postoperative analgesia, high success rate and fewer side effects (Kooloth et al., 2015).

Various approaches to the brachial plexus have been described but the supraclavicular approach is the easiest and most consistent method for anesthesia and perioperative pain management in surgery below the shoulder joint. Local anesthetics alone for supraclavicular brachial plexus block provide good operative conditions but have shorter duration of postoperative analgesia. This problem can be overcome by using long acting local anesthetics like bupivacaine or by using adjuvant in regional anesthesia. Adjuvant added to brachial plexus block should prolong the analgesia, without having systemic side effects, prolong motor block and should also reduce the total dose of local anesthetic. Various studies have investigated several adjuvants including opioids, clonidine, neostigmine, bicarbonate added to local anesthetics in brachial plexus block to achieve quick, dense and prolonged block, but the results are either inconclusive or associated with side effects (Dhumane and Shakir, 2016).

Dexamethasone, a high-potency, long-acting glucocorticoid, has been shown to prolong peripheral nerve blockade in animals and, when added to bupivacaine, to extend the duration of analgesia in humans. Although incompletely understood, dexamethasone's mechanism of action may stem from decreased nociceptive C-fiber activity via a direct effect on glucocorticoid receptors and inhibitory potassium channels. Other authors suggest a local vasoconstrictive effect, resulting in reduced local anesthetic absorption, or a systemic anti-inflammatory effect following vascular uptake of the drug (Albrecht et al, 2015).

Fentanyl is a potent synthetic opioid that produces sedation and analgesia when administered intravenously. Many authors believe that it also prolong the effect of local anesthetics in peripheral nerve blocks through its direct effect on the peripherally-located opioid receptors (Narei et al., *2016*).

AIM OF THE WORK

The aim of our study is to evaluate the effects of adding dexamethasone and fentanyl to bupivacaine in ultrasound guided supraclavicular brachial plexus block for upper limb surgery versus bupivacaine alone.