

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Department: Geophysics

THE SEISMIC HAZARDS STUDY AT KHARGA OASIS, NEW VALLEY, EGYPT

A Thesis submitted in Partial Fulfillment of the requirement for the Master Degree in Science in applied geophysics (Earthquake Seismology)

By

Dalia Hassan Mohamed Ahmed Ali

(B.Sc. in Department of Geophysics, Faculty of Science, Ain Shams University,2016)

To

Department: Geophysics Faculty of Science - Ain Shams University

Supervised by

Prof.Dr. Ahmed Sayed Ahmed Abu El-Ata

Emeritus Professor of Applied Geophysics (Seismic Methods), Faculty of Science, Ain Shams University

Prof.Dr. Awad Al Sayed Mohamed Ismail

Emeritus Professor of Applied Geophysics (Earthquake Seismology), National Research Institute of Astronomy and Geophysics (NRIAG)

Prof.Dr. Amir Maher Sayed Lala

Professor of applied geophysics (petrophysics), Faculty of Science, Ain Shams University.

Cairo (2021)

Master Degree Supervisor's Signatures

THE SEISMIC HAZARDS STUDY AT KHARGA OASIS, NEW VALLEY, EGYPT

A Thesis submitted in Partial Fulfillment of the requirement for the Master Degree in Science in applied geophysics (Earthquake Seismology)

By

Dalia Hassan Mohamed Ahmed Ali

(B.Sc. in Department of Geophysics, Faculty of Science, Ain Shams University,2016)

To

Department: Geophysics Faculty of Science - Ain Shams University

Supervised by

Prof.Dr. Ahmed Sayed Ahmed Abu El-Ata

Emeritus Professor of Applied Geophysics (Seismic Methods), Faculty of Science, Ain Shams University

Prof.Dr. Awad Al Sayed Mohamed Ismail

Emeritus Professor of Applied Geophysics (Earthquake Seismology), National Research Institute of Astronomy and Geophysics (NRIAG)

Prof.Dr. Amir Maher Sayed Lala

Professor of applied geophysics (petrophysics), Faculty of Science, Ain Shams University.

Cairo (2021)

كلية العلوم – ١١٥٦٦ شارع الخليفة المأمون – العباسية - القاهرة – جمهورية مصر العربية Faculty of Science – University of Ain Shams- 11566 Abbassia – Cairo - Egypt

Validity of Master of Science Thesis in Geophysics

- Student Name/ Dalia Hassan Mohamed Ahmed Ali
- Thesis title/ The Seismic Hazards Study at Kharga Oasis, New Valley, Egypt
- Degree/ Master degree in science
- Supervisory Authority /

Prof.Dr. Ahmed Sayed Ahmed Abu El-Ata

Emeritus Professor of Applied Geophysics (Seismic Methods), Faculty of Science,

Ain Shams University

Prof.Dr. Awad Al Sayed Mohamed Ismail

Emeritus Professor of Applied Geophysics (Earthquake Seismology), National Research Institute of Astronomy and Geophysics (NRIAG)

Prof.Dr. Amir Maher Sayed Lala

Professor of applied geophysics (petrophysics), Faculty of Science, Ain Shams University.

Members of the Judging Committee /

Prof.Dr. Mohamed Ahmed Fouad El-Eraki

Professor Emeritus, Department of Geology, Faculty of Science, Zagazig University

Prof. Dr. Abd El-Aziz Lotfy Abd El-Aziz Abd El-Dayem

Emeritus Professor, Department of Geology, Faculty of Science, Tanta University

Prof.Dr. Ahmed Sayed Ahmed Abu El-Ata

Emeritus Professor of Applied Geophysics (Seismic Methods), Faculty of Science,

Ain Shams University

Prof.Dr. Awad Al Sayed Mohamed Ismail

Emeritus Professor of Applied Geophysics (Earthquake Seismology), National Research Institute of Astronomy and Geophysics (NRIAG)

Data for the administration of postgraduate studies

Date of discussion of the message:	/	/	1	
Department Council approval date:	/		/	
Date of approval of the Faculty Board:		/	/	,
Date of approval of the University Council:		/		/

Employee Signature Director of Studies Department Signature

Faculty Secretary

NOTE ABOUT PUBLICATION

It is significant that one work derived from this thesis has been published in an international journal.

Research: Ezzelarab, M., Hassoup, A., Abu El-Ata, A., Lala, A. M., Hassan, D., & Adly, A. (2021). Integration of local soil effect into the assessment of seismic hazard at the Kharga Oasis, Western Desert, Egypt. Scientific African, 12, e00747.

Journal: Scientific African

Available online 16 March 2021.

ACKNOWLEDGMENTS

First, I express my sincere gratitude to the Almighty God, who has given me

the faith and patience to carry out this research. I would like to devote this dissertation

to the soul of my dear father, Hassan, the only person who believed me and for his

continuous support until the last moment of his life. Without him, none of my progress

would have been possible.

This work was supported by "The Next Generation Scientist Scholarship"

funded by the Academy of Scientific Research and Technology. I am extremely pleased

with the academy's president, Prof. Mahmoud Sakr and the finance office staff. Great

credit goes to Professor Dr. Ahmed Sayed Ahmed Abu El-Atta (Department of

Geophysics, Faculty of Science, Ain Shams University) for his supervision and support

throughout this study. I am interested in thanking Professor Dr. Amir Maher Sayed Lala

(Department of Geophysics, Faculty of Science, Ain Shams University).

I really would like to express my heartfelt appreciation to my supervisor,

Professor Dr. Awad El-Sayed Mohamed Ismail Hassoup (Department of Seismology,

National Institute for Astronomy and Geophysics Research, NRIAG), who proposed the

research point and hosted me at NRIAG, and the contact person with the Academy. Also,

for his continuous encouragement and guidance during the research. A big debt of

gratitude is owed to Dr. Mohamed Abdelhay Ezzelarab (Department of Seismology,

NRIAG) for his continuous support, his smooth explanation of the principles of seismic

hazard assessment, and the software programs used in this work. Many thanks to

Professor Dr. Gad El-Kady, President of NRIAG, and every member of the staff at

NRIAG, particularly the members of the Seismology Department at NRIAG.

Signature: Dalia Hassan

I

TABLE OF CONTENTS

Subject	Page
ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF FIGURES.	V
LIST OF TABLES.	XI
ABSTRACT	XII
INTRODUCTION	1
Introduction	1
Objective and Methodology	3
Plan of the Work.	4
Thesis Outlines.	4
CHAPTER ONE: GEOLOGIC SETTING OF THE WESTERN DESERT AND STUDY AREA	5
1.1 Topography of the Western Desert	5
1.2 Stratigraphy of the Western Desert.	7
1.3 Tectonic subdivision of the Western Desert	8
1.4 Local geology of El-Kharga	9
1.4.1 The Geo-morphology	11
1.4.2 The Stratigraphy	13
1.4.3 Geologic Structures	15
CHAPTER TWO: SEISMICITY AND SEISMOTECTONICS	20
2.1 Introduction.	20
2.2 Regional Seismicity of Egypt	20
2.3 Local Seismicity of El-Kharga.	22
2.4 Earthquakes Catalogue	22
2.4.1 Instrumental Earthquakes Catalogue	25
2.4.2 Completeness analysis of earthquakes catalogue	31

Table of contents

2.5 Seismotectonic.	32
2.5.1 Mediterranean Coastal Dislocation Trend	32
2.5.2 Northern Suez-Cairo Red Sea-Gulf Trend	33
2.5.3 Aqaba Gulf- Dead Sea Trend	34
2.5.4 Seismic Source of Dahshour	35
2.5.5 Cairo-Suez Seismic Zone	36
2.5.6 Beni Swief Seismic Zone	37
2.5.7 Middle Egypt Seismic Zone	37
2.5.8 Aswan Seismic Zone	38
CHAPTER THREE: SEISMIC HAZARD ASSESSMENT	42
3.1 Introduction	42
3.2 Methods of Seismic Hazard Assessment	43
3.2.1 Deterministic Seismic Hazard Analysis (DSHA)	44
3.2.2 Probabilistic Seismic Hazard Assessment (PSHA)	45
A. Theoretical background of PSHA	47
B. Identification of Seismic Sources	49
C. Specification of the Magnitude Distribution and Activity	53
Rate	
D. Identifying the Appropriate Ground Motion Predictive	54
Equations	
E. Logic Tree	57
3.3 PSHA Calculations and Results	58
3.3.1 Uniform Hazard Spectra (UHS)	60
3.3.2 Seismic Hazard Maps	62
3.3.3 De-aggregation of PSHA results	75
CHAPTER FOUR: MICROTREMOR MEASUREMENTS IN EL-KHARGA OASIS	79
4.1 Introduction	79

Table of contents

4.2 Site Effect	79
4.3 Definition of Microtremors	80
4.4 Fundamental Resonance Frequency, Using Micrometer Data	82
4.5 Methodology	85
4.6 Field Measurements	87
4.7 Data processing.	90
4.8 Criteria for Results Reliability	93
4.9. H / V Industrial origin peaks	94
4.10 Results and Discussion.	95
CHAPTER FIVE: SUMMARY AND CONCLUSIONS	102
REFERENCES	106
ARABIC SUMMARY	126

LIST OF FIGURES

Figure	Caption	Page
1	The location of study area	2
1.1	Geological map of the Western Desert (after Elbasiouny and Elbehiry, 2019)	8
1.2	The main geographical features and major tectonic trends of Egypt (modified after Meshref 1990). The study area is also shown (red framed area).	10
1.3	A) Shuttle Radar Topography Mission (STRM) Digital Elevation model (DEM) of Egypt and (B) SRTM DEM of El- Kharga Depression (after Parks et al.,2017)	14
1.4	Geological Map of El-Kharga Depression, southern Western Desert, Egypt (modified after Hermina, M.,1990)	16
1.5	Structural lineaments map of El-Kharga Oasis (after El-Elshazly et al., 1976).	19
2.1	Seismicity of the Eastern Mediterranean Region. Acronyms: AEG = Aegean Sea; Al = Alexandria City; CY = Cyprus; ERA = Eratosthenes Seamount; FL = Florence; IB = Ionian Basin; MR = Mediterranean Ridge; LEV = Levantine Basin; LF = Levant Fault; RA = Ras El Hikma Village; MA = Marsa Matruh City; JAK = Jebel Al Akhdar (after Abu Elenean, 2007)	23
2.2	Locations of the compiled historical earthquakes. (Historical earthquakes are collected from Maamoun,1978; Poirier and Taher,1980; Kebeasy, 1990; Ambraseys et al.,1995)	26

2.3	Seismicity in and around Egypt, during the period from 1900 to 1997, (after Badawy et al. ,2005)	27
2.4	Seismicity map of Egypt revealing the de-clustered instrumental earthquake events within El-Kharga and the surrounding areas for period (1908-2018)	30
2.5	A cumulative number of earthquakes versus time, to show the period of completeness for the various magnitudes	31
2.6	Epicenters and focal mechanisms of earthquakes in the Northern Egyptian Continental Margin region. Normal faulting solutions (in blue), strike-slip (in red) and thrusting solutions (in green). (After Ali & Badreldin, 2019)	39
2.7	Earthquake focal mechanisms of earthquakes in Beni Suef area (after). Normal faulting solutions (in blue) and strikeslip solutions (in red). (After Ali & Badreldin, 2019)	39
2.8	Focal Mechanism Solutions of significant earthquakes, which took place in and around Egypt (after Abd El-Aal et al. ,2020)	40
2.9	Earthquake focal mechanisms surrounding the Nile River in Egypt (after Ezz Elarab, 2010)	41
3.1	Steps for conducting the deterministic seismic hazard analysis (DSHA) (after Reiter,1991)	45
3.2	Steps in Probabilistic seismic hazard analysis (after Reiter,1991)	46
3.3	The proposed seismic sources model for the study area	51
3.4	The proposed seismic sources model of Egypt, proposed by Abd El-Aal (2016)	52

3.5	the logic tree's branches implemented in hazard calculation. The given numbers represent the weight of each branch
3.6	Grid points for calculating PSHA
3.7	Uniform hazard spectra for the rock site in El-Kharga Oasis
3.8	Uniform hazard spectra for the rock site in Baris Oasis
3.9	Mean peak acceleration (cm/s²) on the bed rock, with 2 % probability of being exceed ed in 50 years (2475years return period)
3.10	Mean peak acceleration (cm/s²) on the bed rock, with 5 % probability of being exceed ed in 50 years (975 years return period)
3.11	Mean peak acceleration (cm/s²) on the bed rock, with 10 % probability of being exceed ed in 50 years (475 years return period).
3.12	Mean peak acceleration cm/s ²) on the bed rock, with 50 % probability of being exceed ed in 50 years (72 years return period).
3.13	Mean spectral acceleration cm/s ²) for 0.1 sec spectral period on the bed rock, with 2 % probability of being exceed ed in 50 years (2475 years return period).
3.14	Mean spectral acceleration (cm/s²) for 0.1 sec spectral period on the bed rock, with 5 % probability of being exceed ed in 50 years (975 years return period)
3.15	Mean spectral acceleration (cm/s ²) for 0.1 sec spectral period on the bed rock, with 10 % probability of being exceed ed in 50 years (475 years return period)

3.16	Mean spectral acceleration (cm/s²) for 0.1 sec spectral period on the bed rock, with 50 % probability of being exceed ed in 50 years (72 years return period)	66
3.17	Mean spectral acceleration (cm/s ²) for 0.5 sec spectral period on the bed rock, with 2 % probability of being exceed ed in 50 years (2475 years return period)	67
3.18	Mean spectral acceleration (cm/s ²) for 0.5 sec spectral period on the bed rock, with 5 % probability of being exceed ed in 50 years (975 years return period)	67
3.19	Mean spectral acceleration (cm/s ²) for 0.5 sec spectral period on the bed rock, with 10 % probability of being exceed ed in 50 years (475 years return period)	68
3.20	Mean spectral acceleration (cm/s ²) for 0.5 sec spectral period on the bed rock, with 50 % probability of being exceed ed in 50 years (72 years return period)	68
3.21	Mean spectral acceleration (cm/s ²) for 1.0 sec spectral period on the bed rock, with 2 % probability of being exceed ed in 50 years (2475 years return period)	69
3.22	Mean spectral acceleration (cm/s ²) for 1.0 sec spectral period on the bed rock, with 5 % probability of being exceed ed in 50 years (975 years return period)	69
3.23	Mean spectral acceleration (cm/s²) for 1.0 sec spectral period on the bed rock, with 10 % probability of being exceed ed in 50 years (475 years return period)	70
3.24	Mean spectral acceleration (cm/s ²) for 1.0 sec spectral period on the bed rock, with 50 % probability of being exceed ed in 50 years (72 years return period)	70
3.25	Mean spectral acceleration (cm/s ²) for 1.5 sec spectral period on the bed rock, with 2 % probability of being exceed ed in 50 years (2475 years return period)	71