

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY

Ain Shams University Faculty of Science Geophysics Department



## "Reservoir Characterization Based on Seismic Inversion Techniques, at West Al Khilala Field, Onshore Nile Delta, Egypt"

A Thesis Submitted for a Partial Fulfillment for the Requirements of the Master Degree of Science in Geophysics

By

#### Omar Mohammad Aly Ebrahim El-Gharabawy

(B.Sc. in Geophysics, Faculty of Science, Ain Shams University, 2017)

To

## **Geophysics Department, Faculty of Science, Ain Shams University**

Under The Supervision of

### Prof. Dr. Ahmed Sayed Ahmed Abu El-Ata

Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

#### Prof. Dr. Abdel Moktader Abdel Aziz El-Sayed

Professor of Petrophysics, Geophysics department, Faculty of Science, Ain Shams University

#### Dr. Amr Mahmoud Mohamad Ahmed

General Manager of Geology and Geophysics, Mansoura Petroleum Company

**Cairo-2021** 

Ain Shams University Faculty of Science Geophysics Department



## **Approval Sheet**

## "Reservoir Characterization Based on Seismic Inversion Techniques, at West Al Khilala Field, Onshore Nile Delta, Egypt"

A Thesis Submitted for a Partial Fulfillment for the Requirements of the Master Degree of Science in Geophysics

By

#### **Omar Mohammad Aly Ebrahim El-Gharabawy**

(B.Sc. in Geophysics, Faculty of Science, Ain Shams University, 2017)

To

## **Geophysics Department, Faculty of Science, Ain Shams University**

| Advisors                                          | Approved |
|---------------------------------------------------|----------|
| Prof. Dr. Ahmed Sayed Ahmed Abu El-Ata            |          |
| Professor of Geophysics, Geophysics Department,   |          |
| Faculty of Science, Ain Shams University          |          |
| Prof. Dr. Abdel Moktader Abdel Aziz El-Sayed      |          |
| Professor of Petrophysics, Geophysics department, |          |
| Faculty of Science, Ain Shams University          |          |
| Dr. Amr Mahmoud Mohamad Ahmed                     |          |
| General Manager of Geology and Geophysics,        |          |
| Mansoura Petroleum Company                        |          |

**Cairo-2021** 

### **Note**

The present thesis is submitted to Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1. Geophysical field measurements.
- 2. Numerical analysis and computer programming.
- 3. Elastic wave theory.
- 4. Seismic data acquisition.
- 5. Seismic data processing.
- 6. Seismic data interpretation.
- 7. Seismology.
- 8. Engineering seismology.
- 9. Deep seismic sounding.
- 10. Structure of the earth.

He successfully passed the final examinations in these courses. In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Abdel-Khalek EL-Werr.

#### **ACKNOWLEDGEMENTS**

First and foremost, I would like to thank God, whose many blessings have made me who I am today.

I would like to express the deepest appreciation to my committee chair Professor Dr. Ahmed Sayed Ahmed Abu El-Ata and Prof. Dr. Abdel Moktader Abdel Aziz El-Sayed, and Dr. Amr Mahmoud Mohamad Ahmed, who showed the attitude and the substance of a geniuses, they continually and persuasively conveyed a spirit of adventure in regard to research and an excitement in regard to teaching. Without their supervision and constant help, this dissertation would not have been possible.

I would like to express my particular gratitude and deep appreciation to **Dr. Abd El-Aleem Hassan Hassan Elessawy**, Ex. Schlumberger Geoscience Business Manager, for his excellent guidance and support throughout my research.

I am very grateful to my colleagues in **Ain Shams University** and everyone who has offered advices, suggestions and provided support, when it was most needed. Special thanks to the Egyptian General Petroleum Corporation (EGPC) for permission to release the needed data.

Finally, I would like to express my deepest gratitude to my mother, father and sister, for their moral support and blessings.

#### **ABSTRACT**

The West Al-Khilala Field is a Messinian (Late Miocene) gas field located in Northwest El Mansoura concession, at the southern part of the Onshore Nile Delta, Egypt. The present study deals with a comprehensive interpretation for the seismic and well-log data and applying post-stack seismic inversion techniques, using the computer program of Petrel 2017.1, Hampson Russel and Tech Log 2015.1 softwares.

The available data for the current study is only 20 2-D seismic reflection lines and 4 wells including the open-hole logs and checkshot surveys, which are not sufficient to perform adequate study of the structural and stratigraphic features for the West Al-Khilala field. So, it is needed to resample the given 2-D seismic lines into a 3-D grid, using Petrel software.

Both seismic and well logs data were integrated, to exactly delineate the NW-SE Messinian Abu Madi gas-bearing channel. And also, to interpret the subsurface structural features; like NW-SE normal faults, with a down thrown side to the east.

Interpretation is also extended to the seismic attributes and post-stack seismic inversion techniques, which marked the high acoustic impedance (AI) zones. They represent very strong characteristic responses, that delineate reservoirs, especially gas-bearing sandstone reservoirs, like Abu Madi channel in this study It has low bulk densities and very low P-wave propagation velocities. So, it is a useful way to track this channel across West Al Khilala Field away from the well locations using the inverted acoustic impedance values.

The lateral variations of the petrophysical characteristics are represented in the form of iso-parametric maps (net-pay thickness, shale content, effective porosity, water saturation and hydrocarbon saturation). These petrophysical properties of Abu Madi Sandstone reflect the ability of this rock to store and produce hydrocarbon fluids. The effective porosity of Abu Madi Sandstone reservoir ranges between 9.1 and 19.8%, the shale/clay volume content ranges from 19.8 to 63.7%, and the hydrocarbon saturation ranges between 9 and 30.2%.

The obtained results of seismic attributes and seismic post-stack inversion results and the integration between them and well logs give an idea about the subsurface structural setting and the trend of Abu Madi gasbearing sandstones channel and the locations of high acoustic impedance zones and also the high effective porosity and gas saturation values, which can be regarded as a gas charged reservoir.

## LIST OF CONTENTS

| Subject                                                            | Page |
|--------------------------------------------------------------------|------|
| 1. Chapter-1 Geologic Setting                                      | 1    |
| 1.1. Introduction                                                  | 1    |
| 1.2. Surface Geology                                               | 2    |
| 1.3. Subsurface Stratigraphy                                       | 3    |
| 1.3.1. Precambrian and Paleozoic Units                             | 3    |
| 1.3.2. Mesozoic Units                                              | 3    |
| 1.3.3. Cenozoic Units                                              | 5    |
| 1.4. Structures and Tectonic Elements of Nile Delta                | 15   |
| 1.4.1. Southern Delta Block                                        | 18   |
| 1.4.2. Northern Delta Basin                                        | 19   |
| 1.5. Geologic History                                              | 20   |
| 1.6. Previous Exploration and Drilling Histories of the Nile Delta | 23   |
| 1.7. Scope of the Present Work                                     | 26   |
| 2. Chapter-2 Seismic Interpretations                               | 28   |
| 2.1. Introduction                                                  | 28   |
| 2.2. Seismic Data Availability                                     | 29   |
| 2.3. Resampling the 2-D Seismic Lines into a 3-D seismic Grid      | 29   |
| 2.4. Seismic Interpretation                                        | 34   |
| 2.4.1. Seismic to Well Ties                                        | 34   |
| 2.4.2. Horizons Picking                                            | 35   |
| 2.4.3. Faults Tracing                                              | 38   |
| 2.4.4. Seismic Attributes and Results Analysis                     | 42   |
| 3. Chapter-3 Velocity Model and Domain Conversion                  | 49   |

|      | 3.1. Introduction                                                                       | 49 |
|------|-----------------------------------------------------------------------------------------|----|
|      | 3.2. Velocity of Waves in Different Layers                                              | 50 |
|      | 3.3. Velocity Definitions                                                               | 51 |
|      | 3.4. Sources of Velocity information                                                    | 52 |
|      | 3.5. Depth Conversion Methods                                                           | 53 |
|      | 3.6. Layering - Dividing the Earth's section into Layers with Similar Velocity Behavior | 54 |
|      | 3.7. Sonic Log Calibration with Checkshot for West Al Khilala Wells                     | 55 |
|      | 3.8. Time Surfaces and Well Tops Correction                                             | 60 |
|      | 3.9. Velocity Model                                                                     | 61 |
|      | 3.10. Domain Conversion from Time Surfaces to Depth Surfaces                            | 62 |
| 4. ( | Chapter-4 Post-Stack Seismic Inversions                                                 | 64 |
|      | 4.1. Introduction.                                                                      | 64 |
|      | 4.2. Objective of Seismic Inversion                                                     | 64 |
|      | 4.3. Importance of Seismic Inversion                                                    | 65 |
|      | 4.4. Inversion Methodology                                                              | 65 |
|      | 4.4.1. Post-Stack                                                                       | 67 |
|      | 4.4.2. Post-Stack                                                                       | 67 |
|      | 4.5. Wavelet Extraction                                                                 | 68 |
|      | 4.6. Post-Stack Seismic Inversions                                                      | 71 |
|      | 4.6.1. Colored Inversion                                                                | 75 |
|      | 4.6.2. Model-Based Inversion                                                            | 81 |
|      | 4.6.3. Sparse-Spike Inversion                                                           | 88 |
|      | 4.7. Reservoir Characterization based on Inverted Post-Stacked Seismic Data             | 92 |
| 5. ( | Chapter-5 Petrophysical Well Log Analysis                                               |    |
| -•   | 5.1. Introduction                                                                       |    |

| 5.2. Available Data                                            | 95     |
|----------------------------------------------------------------|--------|
| 5.3. Wireline Log Quality Control                              | 95     |
| 5.4. Petrophysical Well Log Analysis Procedure                 | 96     |
| 5.4.1. Data Editing                                            | 96     |
| 5.4.2. Zonation                                                | 96     |
| 5.4.3. Density                                                 | 96     |
| 5.4.4. Shale Volume Calculation using Gamma Ray                | 97     |
| 5.4.5. Effective Porosity Calculation                          | 98     |
| 5.4.6. Water Saturation Calculation                            | 98     |
| 5.4.7. Hydrocarbon Saturation Calculation                      | 99     |
| 5.5. Results and Discussion                                    | 99     |
| 5.5.1. West Al Kilala-2 Well                                   | 99     |
| 5.5.2. West Al Kilala-4 Well                                   | 101    |
| 5.5.3. West Al Kilala-5 Well                                   | 103    |
| 5.5.4. West Al Kilala-6 Well                                   | 105    |
| 5.6. Rock Genetic Types from Log Curve Shape                   | 107    |
| 5.6.1. Rock Genetic Types Analysis                             | 109    |
| 5.7. Isoparametric maps                                        | 114    |
| 5.7.1. Isopach Map of Abu Madi Formation                       | 114    |
| 5.7.2. Net Pay Map of Abu Madi Formation                       | 115    |
| 5.7.3. Shale Volume Map of Abu Madi Formation                  | 116    |
| 5.7.4. Shale Volume Map of Abu Madi sandstone (reservoir zone  | e) 117 |
| 5.7.5. Effective Porosity Map of Abu Madi sandstone (reservoir | zone)  |
|                                                                | 118    |
| 5.7.6. Water Saturation Map of Abu Madi sandstone              | 119    |
| 5.7.7. Hydrocarbon Saturation Map of the Abu Madi sandstone    | 120    |

| Appendices                                                        | . 153 |
|-------------------------------------------------------------------|-------|
| References                                                        | . 147 |
| Recommendations                                                   | . 146 |
| Summary and Conclusions                                           | . 144 |
| 5.10. Results and Integrations between Seismic and Will Logs Data | . 143 |
| 5.9.4. Acoustic Impedance Vp/Vs Ratio                             | . 140 |
| 5.9.3. Poisson's Ratio                                            | . 135 |
| 5.9.2. Pore aperture size (r36) calculation from permeability     | . 129 |
| 5.9.1. Permeability Prediction                                    | . 125 |
| 5.9. Petrophysical Modeling                                       | . 125 |
| 5.8. Correlation between West Al Khilala Wells                    | . 123 |
| 5.7.9. Interpretation of Iso-Parametric Maps                      | . 122 |
| 5.7.8. Acoustic Impedance Map of Abu Madi sandstone               | . 121 |

## LIST OF FIGURES

| Figure 1: Location map of the study area of West Al-Khilala Field                                                                                                  | 2                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Figure 2: A generalized geologic time scale of the Mesozoic (ICS & IUGS, 2010)                                                                                     |                      |
| Figure 3: A localized stratigraphic column of the Nile Delta Field, (EGPC, 1994)                                                                                   |                      |
| Figure 4: Schematic block diagram illustrating the depositional Khilala Reservoir to be a braided channel system Abd El Moneim, A., Kassem, M. & Hashem, M. (2009) | m, (Mahmoud, A.,     |
| Figure 5: The Nile Delta structural pattern (Kamel et al, 1998)                                                                                                    | 18                   |
| Figure 6: Scheme of the stratigraphic relations in the Nile showing the structural sub-provinces in the Nile D et al., 1978)                                       | elta (After, Rizzini |
| Figure 7: Areal distribution of the major tectonic features, bas interpretation (Harms & Wary, 1990)                                                               |                      |
| Figure 8: Simplified north-south cross section of the Nile I 1990).                                                                                                |                      |
| Figure 9: Shows the constitution of the available seismic data                                                                                                     | 29                   |
| Figure 10: Statistics tab of West Al Kilala line 11 in the 2D seismic g                                                                                            | rid 30               |
| Figure 11: The workflow used to automatically generate the period the desired vertical sampling rate and length                                                    |                      |
| Figure 12: Show a comparison between the original 2D line the left, and the equivalent resampled 2D line in the right.                                             | ne 3D cube, to the   |
| Figure 13: Correlation between the seismic and generated synthetic se                                                                                              | eismogram 35         |
| Figure 14: Xline 192 shows the horizons interpreted, based on observed after the seismic-to-well ties as geologic mark                                             |                      |

| Figure 15: Inline 171 shows the horizons interpreted, based on the seismic events                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| observed, after the seismic-to-well ties, as geologic markers                                                                                                                                                                                      |
| Figure 16: Xline 312 shows the horizons interpreted, based on the seismic events observed, after the seismic-to-well ties, as geologic markers                                                                                                     |
| Figure 17: Inline 271 shows the faults interpretation, based on the seismic events 40                                                                                                                                                              |
| Figure 18: Inline 101 shows the faults interpretation, based on the seismic events and the ungular unconformity below Qawasem formtion                                                                                                             |
| Figure 19: Shows the structure contour map on the top of Abu Madi Sand (reservoir/bay zone top)                                                                                                                                                    |
| Figure 20: shows the sweetness attribute map on the top of Abu Madi Sand (reservoir/bay zone top)                                                                                                                                                  |
| Figure 21: Shows the RMS attribute applied on the seismic section Xline 216 that clearly define the reservoir zone                                                                                                                                 |
| Figure 22: Shows the RMS attribute time slice at Z-2685, that clearly define the reservoir channel trend and the fault trends                                                                                                                      |
| Figure 23: Shows the structural smooth attribute time slice at Z-2715, that clearly define the reservoir channel trend and the fault trends                                                                                                        |
| Figure 24: Shows the structural smooth - chaos attribute time slice at Z-2715 that clearly define the reservoir channel trend and the fault trends                                                                                                 |
| Figure 25: Shows the structural smooth – instantaneous phase attribute time slice at Z-2695, that clearly define the reservoir channel trend and the fault trends                                                                                  |
| Figure 26: Illustrate the different Velocity Definitions                                                                                                                                                                                           |
| Figure 27: Example of a velocity layering scheme from the southern North Sea Permian Salt Basin. An area with a complex geologic history. Some layers can be merged for simplicity and most parts are nowhere nea this complex. (Alan Foum, 2019). |