

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



# Influence of The Use of Scaffold on The Regeneration Potential of Necrotic Immature Human Permanent Anterior Teeth: Clinical Study

#### Thesis

Submitted to

Faculty of Oral and Dental Medicine Ain Shams University in Partial

Fulfillment of Requirements for master's degree

in Endodontics

By

**Ahmed Mohamed Khalil Mohamed** 

B.D.S (2011)

Faculty of Dentistry
Ain Shams University

#### Supervised by:

## Dr. Karim Mostafa El-Batoty

Professor of Endodontics, Ain Shams University

Dr. Mohamed Mokhtar Nagy

Associate Professor of Endodontics, Ain Shams University

#### Acknowledgment

I would like to thank all the people who contributed in some way to the work described in this thesis.

First and foremost, I thank Professor **Karim Mostafa El-Batoty** for his great support, generosity, and interest in my work. I would also like to thank my supervisor, Dr. **Mohamed Mokhtar Nagy**, for accepting me into his group of candidates. Thank you for the advice, support, and willingness that allowed me to pursue research on topics for which I am truly passionate. I see the same drive and passion in your own research efforts, and I thank you for letting me do the same.

There is no word capable of expressing my gratitude and appreciation towards my wife. Thank you for being there to talk and to offer guidance during one of the more difficult times of my life. You recognized that I at times needed to work alone but also made sure to check in on me so that I stayed on the right path.

Last but not least, I must offer my truly deepest appreciation thanks for my father. You had encouraged my academic interests from day one, even when my curiosity led to incidents that were kind of hard to explain. Thank you.

Ahmed Mohamed Khalil

#### **Contents**

| Title                   | Page |
|-------------------------|------|
| List of Tables          | I    |
| List of Figures         | II   |
| List of Abbreviations   | III  |
| 1. Introduction         | 1    |
| 2. Review of Literature | 3    |
| 3. Aim of The Study     | 21   |
| 4. Materials & Methods  | 22   |
| 5. Results              | 32   |
| 6. Discussion           | 46   |
| 7. Summary & Conclusion | 53   |
| 8. References           | 56   |
| 9. Arabic Summary       | 68   |

#### **List of Tables**

| Table   | Table Content                                                                                                            | Page |
|---------|--------------------------------------------------------------------------------------------------------------------------|------|
| Table 1 | Patient distribution among groups                                                                                        | 32   |
| Table 2 | The mean, standard deviation (SD) values of change in tooth length of different groups                                   | 35   |
| Table 3 | The mean, standard deviation (SD) values of change in tooth length of different groups throw the follow up intervals     | 36   |
| Table 4 | The mean, standard deviation (SD) values of change in dentin thickness of different groups                               | 39   |
| Table 5 | The mean, standard deviation (SD) values of change in dentin thickness of different groups throw the follow up intervals | 40   |
| Table 6 | The mean, standard deviation (SD) values of change in apical diameter of different groups                                | 43   |
| Table 7 | The mean, standard deviation (SD) values of change in dentin thickness of different groups throw the follow up intervals | 44   |

# **List of Figures**

| Figure    | Figure Content                                                               | Page |
|-----------|------------------------------------------------------------------------------|------|
| Figure 1  | Photograph showing injectable calcium hydroxide paste                        | 22   |
| Figure 2  | Photograph showing mineral trioxide aggregate                                | 22   |
| Figure 3  | Photograph showing Enamel matrix derivative                                  | 22   |
| Figure 4  | Photograph showing the informed consent.                                     | 28   |
| Figure 5  | Photograph showing the informed consent                                      | 29   |
| Figure 6  | Photograph showing the informed consent                                      | 30   |
| Figure 7  | Photograph Showing Digital Measurement of Root Length Using                  | 31   |
|           | Image J Software                                                             |      |
| Figure 8  | Photograph Showing Digital Measurement of Root Thickness                     | 31   |
|           | Using Image J Software                                                       |      |
| Figure 9  | Photograph Showing Digital Measurement of The Apical                         | 31   |
|           | Diameter Using Image J Software                                              |      |
| Figure 10 | Bar chart representing tooth length for different groups                     | 35   |
| Figure 11 | Figure 11 Bar chart representing tooth length for different groups throw the |      |
|           | follow up intervals                                                          |      |
| Figure 12 | Bar chart representing dentin thickness for different groups                 | 39   |
| Figure 13 | Bar chart representing dentin thickness for different groups throw           | 40   |
|           | the follow up intervals                                                      |      |
| Figure 14 | Bar chart representing apical diameter for different groups                  | 43   |
| Figure 15 | Bar chart representing apical diameter for different groups throw            | 44   |
|           | the follow up intervals                                                      |      |
| Figure 16 | Radiograph showing representative case of group B at baseline                | 45   |
|           | and 12-month interval                                                        |      |
| Figure 17 | Radiograph showing representative case of group B at baseline                | 45   |
|           | and 12-month interval                                                        |      |

### **List of Abbreviations**

| ALP                 | Alkaline Phosphatase                     |
|---------------------|------------------------------------------|
| BMPs                | Bone Morphogenic proteins                |
| BPC                 | Bismuth Oxide Containing Portland Cement |
| Ca(OH) <sub>2</sub> | Calcium Hydroxide                        |
| CBCT                | Cone Beam Computerized Tomogram          |
| CEJ                 | Cementoenamel Junction                   |
| CHX                 | Chlorhexidine                            |
| DAP                 | Double Antibiotic Paste                  |
| EDTA                | Ethylenediaminetetraacetic acid          |
| EMD                 | Enamel Matrix Derivative                 |
| EMP                 | Enamel Matrix Proteins                   |
| HDPCs               | Human Dental Pulp Cells                  |
| IL                  | Interleukin                              |
| MTA                 | Mineral Trioxide Aggregate               |
| NaOCl               | Sodium Hypochlorite                      |
| PDL                 | Periodontal Ligament                     |
| PRF                 | Platelet Rich Fibrin                     |
| PRP                 | Platelet Rich Plasma                     |
| RET                 | Regenerative Endodontic Treatment        |
| TAP                 | Triple Antibiotic Paste                  |
| TGF                 | Transforming Growth Factor               |



# Introduction

#### 1. Introduction

Necrotic immature permanent teeth present a problem in dentistry as no further root completion occurs, leaving open apecies that make cleaning and shaping of wide blunderbuss roots and creating an apical stop or having an apical seal in endodontic treatment difficult. Having incomplete dentin deposition, the root is more prone to fracture during mechanical filing or lateral condensation due to thin dentinal walls. Also increased tooth mobility is expected with the periodontal breakdown resulting from the poor crown-to-root ratio. Endodontic surgery and retrograde filling were used for treating such cases, but this approach is invasive and has its disadvantages as surgical complications and the already fragile root.

Apexification is a technique that was firstly introduced by **Kaiser**, 1964 using calcium hydroxide (Ca (OH)2) and later by **Torabinejad and Chivian**, 1999 using mineral trioxide aggregate (MTA). It entails creating an apical stop or stimulating its formation using one of the mentioned materials.

Regeneration is a technique that is more superior to apexification as it results into normal maturation of the root entirely achieving increase in root length preventing tooth mobility and increase in radicular dentinal wall thickness leading to increased root resistance to fracture (**Cehreli et al., 2012**).

The current idea of pulp tissue regeneration incorporates two potential methodologies. The first is revascularization, where another pulp tissue is required to develop into the root canals from the excess tissues that exist apically in the root canal. The second incorporates the replacement of the infected pulp with a healthy tissue that can revive the tooth and reestablish dentin formation. Stem cell therapy, gene therapy, three-dimensional (3D) cell printing, scaffold implantation, and pulp implantation are suggested for this methodology.

The idea of revascularization was presented by Ostby, 1961. The revascularization procedure relies upon the acceptance of seeping through the

open apical foramen intra the chemically cleaned canal. The canal dentin and the blood clot give scaffolds in the root channel revascularization (Banchs and Trope, 2004). More as of late, platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are recommended as additional potential scaffolds (Torabinejad and Turman, 2011).

In the last few years, enamel matrix derivative (EMD) has also been used as a scaffold in regenerative endodontics and it carries great hopes for continuation of root development in immature necrotic permanent teeth.

A trial was made by **Scarparo et al., 2012** where he evaluated the enamel matrix derivative (EMD) biomaterial in nonvital immature teeth of rats. They concluded that EMD can be considered an option in the treatment of nonvital immature teeth. The ingrowth of cementum-like tissues into canal spaces supported dental wall thickness and may add to tooth resistance and backing.

Another examination was directed by **Matsumoto et al., 2014** to research the impacts of Emdogain gel (EMD) on the damaged open apex within periapical lesions which were initiated in rats. They discovered convincingly that EMD doesn't aggravate harmed periapical tissue and may establish a great climate that advances the healing of injured periapical tissues.

Therefore, the purpose of this study was to investigate the use of scaffolded revascularization using EMD with MTA in comparison to conventional MTA revascularization in human permanent anterior teeth.



## **Review of Literature**

#### 2. Review of Literature

Lately, regenerative endodontic strategies have arisen as a promising option in contrast to apexification, due specifically to points of interest like root improvement and fortification which forestall root breaks by increasing root length and thickening the dentin divider (Narang et al., 2004). The regenerative endodontic treatment of nonvital tainted teeth may happen two ways: (1) utilizing tissue engineering technology, which is portrayed by the dynamic recovery of the dentin-pulp complex to embed or regenerate the pulp (Bansal and Bansal, 2011); and (2) pulp revascularization, a methodology wherein another tissue is relied upon to be formed from the tissue present in the teeth, taking into account the continuation of the improvement of the root (Bansal and Bansal, 2011).

#### 2.1 Revascularization Modalities:

Claus et al., 2004 performed a study to learn more about the pulpal changes in auto-transplanted immature teeth whose pulp tissue was taken out before transplantation. The exploratory material comprised of 16 single-established teeth with open apices, from a beagle dog (3 months old enough). On day 0, 4 teeth were extracted, the pulpal tissues were eliminated, and the teeth were then relocated to their contralateral side. A similar strategy was done on days 9, 16, and 23, each time for 4 single-rooted teeth. Longitudinal paraffin segments were made for histologic examination. The outcomes demonstrated that, following 7 days, 2 of the 4 teeth had an ingrowth of new tissue more than one fourth of their length. Following 14 days, every one of the 4 teeth had ingrowth (≥ one fourth of the pulp chamber). At the 21-day perception, the greater part of the pulp chamber of all teeth were filled, and, following 30 days, there was all out ingrowth in 3 of the 4 teeth. This new tissue consisted of well-organized and well-vascularized connective tissue.