

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

RECOVERY AND PURIFICATION OF TITANIUM OXIDE PIGMENT FROM ROSETTA ILMENITE MINERAL CONCENTRATE USING MODIFIED ORGANIC MATERIALS

Thesis Submitted by

Islam Mansour Abd El-Fadiel El-Sayed Fouda

B.Sc. in Chemistry, 2007 M.Sc. in Chemistry, 2017

For the requirement of Ph.D. Degree of Science in Chemistry

To

Department of Chemistry Faculty of Science, Ain Shams University

Supervised by:

Prof. Dr. Mohamed Youssef El-Kady

Prof. of Organic Chemistry Faculty of Science Ain Shams University

Prof. Dr.
Ahmed Osman Youssef

Prof. of Analytical Chemistry Faculty of Science Ain Shams University Prof. Dr.
Enass Mohamed El-Sheikh

Prof. of Ore Processing Nuclear Materials Authority Egypt

Prof. Dr.
Ahmed Hussien Orabi

Prof. of Analytical Chemistry Nuclear Materials Authority Egypt

Approval Sheet

Ph.D. Thesis

Recovery and purification of Titanium oxide Pigment from Rosetta Ilmenite Mineral Concentrate Using Modified Organic Materials

Submitted by

Islam Mansour Abd El-Fadiel El-Sayed Fouda

"M.Sc in Organic Chemistry"

A Thesis for

Ph.D. of Science in Chemistry

Thesis Advisors:

Approved

Prof. Dr. Mohamed Youssef El-Kady

Prof. of Organic Chemistry

Faculty of Science - Ain Shams University

<u>Prof. Dr. Enass Mohamed El-Sheikh</u>

Prof. of Ore Processing

Nuclear Materials Authority – Egypt

Prof. Dr. Ahmed Osman Youssef

Prof. of Analytical Chemistry

Faculty of Science - Ain Shams University

Prof. Dr. Ahmed Hussien Orabi

Prof. of Analytical Chemistry

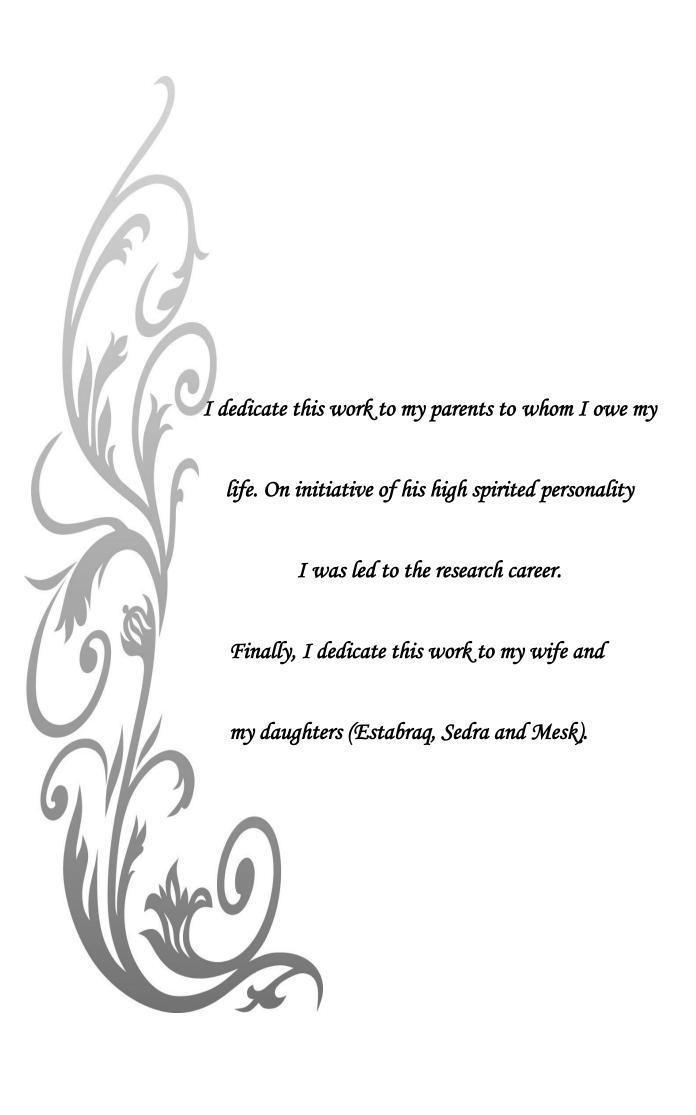
Nuclear Materials Authority - Egypt

Head of Chemistry Department

Prof. Dr.: Ayman Ayoub Abdel-Shafi

Acknowledgement

I am deeply thankful to Allah, the lord of the worlds, for showing me the right path and helping me to complete this work by the grace of Allah, most beneficent and most merciful.


I would like to take this opportunity to express my deepest respect, sincere appreciation, and respect to Prof. Dr. Mohamed Youssef El-Kady, Prof. of Organic Chemistry, Faculty of Science, Ain Shams University, Prof. Dr. Enass Mohamed El-Sheikh, Prof. of Ore Processing, Nuclear Materials Authority, Prof. Dr. Ahmed Osman Youssef, Prof. of Analytical Chemistry, Faculty of Science, Ain Shams University, and Prof. Dr. Ahmed Hussien Orabi, Prof. of Analytical chemistry, Nuclear Materials Authority, for their supervision, suggesting the research problem, useful guidance, fruitful discussion in continues seminars, encouragement and criticism when need, and facilities their offered me throughout the progress and till finishing this work.

Deep thanks to the Nuclear Materials Authority for its assistance during my research period and for facilitating all procedures in order to complete the research and produce it in a wonderful manner.

My thanks also extend to all the staff members and my colleagues at the Faculty of Science, Ain Shams University, for their cooperation and encouragement during this work.

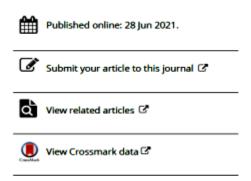
I express my deep thanks to my family, my parents, for their support, and a special thanks to my wife for her help, support, encouragement, and advice during this work from the start till now.

Islam Mansour Fouda

ولموّالخِّ أَحْرَاللَّ وَهِ الْحَرَاللَّ وَهِ الْحَرَاللَّ وَهِ الْحَرَاللَّ وَهِ الْحَرَاللَّ وَهِ اللَّهِ وَالْحَارِ اللَّهِ وَالْحَارِ اللَّهُ وَالْحَارِ الْحَارِ الْحَرْ الْحَارِ الْحَارِ الْحَارِ الْحَارِ الْحَارِ الْحَارِ الْحَرْ الْحَرْامِ الْحَرْ الْحَرْ الْحَرْ الْحَرْامِ الْحَرْ الْحَرْزِ الْحَرْ الْحَرْدِ الْحَرْزِ الْحَرْزِ الْحَرْامِ الْحَرْامِ الْحَرْزِ الْحَرْزِ الْحَرْزِ الْحَرْامِ الْحَرْزِ الْحَا

Publication

International Journal of Environmental Analytical Chemistry


ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/geac20

Elimination of Cr (VI), Pb (II), V (V), and Cd (II) ions from Titanium oxide Pigment from Rosetta ilmenite Concentrate Using synthesised Cellulose Phosphorus Oxychloride

Islam M. Fouda, Mohamed Y. El-Kady, Enass M. El-Sheikh, Ahmed H. Orabi & Ahmed O. Youssef

To cite this article: Islam M. Fouda, Mohamed Y. El-Kady, Enass M. El-Sheikh, Ahmed H. Orabi & Ahmed O. Youssef (2021): Elimination of Cr (VI), Pb (II), V (V), and Cd (II) ions from Titanium oxide Pigment from Rosetta ilmenite Concentrate Using synthesised Cellulose Phosphorus Oxychloride, International Journal of Environmental Analytical Chemistry, DOI: 10.1080/03067319.2021.1943374

To link to this article: https://doi.org/10.1080/03067319.2021.1943374

Abbreviations

List of abbreviations and symbols

MCC	Microcrystalline cellulose
CNCs	Cellulose nanocrystals
PVC	Polyvinyl chloride
DMSO	Dimethyl sulfoxide
PEI	Polyethyleneimine
ph.ph.	Phenol phthalein
M.O.	Methyl orange
BET	Polyethylene terephthalate
СОР	Cellulose impregnated phosphorus oxychloride
Comp.	Compound
D.P.	Degree of polymerization
H¹-NMR	Proton Nuclear Magnetic Resonance
d_6	Deuterated DMSO
M/L	Mole/Liter
°K	kelvin scale
IR	Infra-Red Spectra
SEM	Scanning Electron Microscope
FESEM	Field Emission Scanning Electron Microscopy
AAS	Atomic Absorption Spectrometer
ICP	Inductively Coupled Plasma
TMS	Tetramethylsilane
EDX	Energy Dispersive X-Ray Analysis

Contents

Contents

Title	
Aim of the Work	
List of Figures	
List of Tables	
List of Schemes	
Summary	
CHAPTER I INTRODUCTION	
1. General	1
2. Ilmenite ore	
2.1 Discovery	
2.2 Occurrence and Formation	
2.3 Mineral chemistry	
2.4 Processing	
2.5 Application	
3.Titanium dioxide overview	
3.1 Titanium Resources	
3.1.1 Main Deposits of Titanium Mineral	
3.1.2 Titanium ore consumption	
3.2 Recovery of titanium dioxide from Ilmenite ores	
3.2.1 Leaching Processes	
3.2.1.1 Strong acid leaching	

Contents

3.2.1.2 Weak acid leaching	
3.2.1.3 Caustic leaching	
3.2.1.4 Bioleaching	
3.2.1.5 Comparing leaching efficiency	
3.3 Purification of Titanium oxide	
4. Uses of Titanium Dioxide Pigments	
4.1 Coatings, Plastic and Paint	
4.2 Printing Inks and Paper	
4.3 Pharmaceutical and Cosmetic Industries	
4.4 Textiles	25
4.5 Food Industry	
4.6 Titanium Dioxide Nanomaterials	
5. Role of cellulose in adsorption process	
5.1 Chemistry of cellulose	
5.1.1 Reaction of cellulose with water	
5.1.2 Reaction of cellulose with organic solvents	
5.1.3 Reaction of cellulose with inorganic salts	
5.1.4 Treatment of cellulose with ammonia	
5.1.5 Treatment of cellulose with acids	
5.2 Ions exchangers of cellulose	
5.2.1 Cellulose ion exchanger	
5.2.2 Some kinds of natural cation exchange resins	
5.2.3 Some kinds of anion exchange resins	
5.3 Cellulose as a natural and modified adsorbent	