

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

TEXT EXTRACTION AND ENHANCEMENT FROM IMAGERY FILMS AND NEWS

By

Hossam Ahmed Fadel Elshahaby

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

TEXT EXTRACTION AND ENHANCEMENT FROM IMAGERY FILMS AND NEWS

By **Hossam Ahmed Fadel Elshahaby**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Mohsen Rashwan

.....

Professor of Electronics and Communications Department, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

TEXT EXTRACTION AND ENHANCEMENT FROM IMAGERY FILMS AND NEWS

By **Hossam Ahmed Fadel Elshahaby**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Examining Committee	
Prof. Dr. Mohsen A. Rashwan,	Thesis Main Advisor
Assistant Prof. Dr. Omar A. Nasr,	Internal Examiner
Prof. Dr. Khalid M. El Sayed,	External Examiner

Approved by the

Faculty of Computers and Information, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Hossam Ahmed Fadel Elshahaby

Date of Birth: 03/02/1988 **Nationality:** Egyptian

E-mail: hossam.elshahaby@gmail.com

Phone: +20 111 654 22 55

Address: Mohandessen, Agouza, Giza

Registration Date: 01/10/2014

Awarding Date: 2021

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisor:

Prof. Mohsen Rashwan

Examiners:

Prof. Mohsen A. Rashwan (Thesis Main Advisor)

Dr. Omar A. Nasr (Internal Examiner)

Prof. Khalid M. El Sayed (External Examiner) Faculty of Computers and Information, Cairo University

Title of Thesis:

Text Extraction And Enhancement From Imagery Films And News.

Key Words:

Text Detection and Text Recognition; Edge Features; Multiple Frames Integration; Films videos; Computer Vision.

Summary:

This research solves problems of text detection, verification, segmentation, and enhancement in text imagery applications like news and films. Recent approaches are applied in an efficient way. In news videos, locating multiple captions is done using edge detection by grayscale-based and color-based techniques. Stationary as well as moving captions across frames are automatically classified as horizontal or vertical motion using combinatory techniques of recurrent neural network and correlation-based technique. The Convolutional Neural Nets (CNNs) is used to verify the caption as a caption containing text for further processing. In films, several CNNs are implemented to detect frames containing text with high accuracy. Error handling and correction algorithm are applied to resolve classification problems. Multiple frames integration technique is used to extract inserted text in graphics and enhance it. The Correctly Detected Characters (CDC) overall average weighted accuracy for news text recognition using Autoencoder Neural Network (ANN) is 96.07% while the CDC average weighted accuracy for films text translation is 97.79%.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Hossam Ahmed Fadel Elshahaby	Date: / / 2021
------------------------------------	----------------

Signature:

Dedication

I would like to dedicate my thesis to my parents and sister for supporting and encouraging me during my Master's degree.

Acknowledgments

Firstly, I would like to thank God for helping me and facilitating all obstacles out of my hand until this research is finally finished successfully. Next, I would like to thank the RDI team for supporting me with their experience and data set used in my research. Special thanks to Professor Dr. Mohsen Rashwan for his contribution with several ideas which I used to solve the problem of caption detection and enhancement from images as well as empowering me during the whole period of research.

Also, I would like to thank Professor Dr. Mohsen Rashwan for his patience during the period of the research. Indeed, I apologize from the bottom of my heart for any misunderstanding or mistakes. Really, I respect and do love you Dr. Mohsen. Special thanks from the bottom of my heart goes to the examining committee for their valuable comments and corrections during discussion of thesis.

Finally, this work would not be carried out without the support coming from the electronics and communications department members in the Cairo University Faculty of Engineering (CUFE).

Table of Contents

DISCLAIMER	R	I
DEDICATION	N	II
TABLE OF CO	ONTENTS	IV
LIST OF TAB	LES	VII
LIST OF FIGU	URES	X
	ΓURE	
ABSTRACT		XIV
CHAPTER 1:	INTRODUCTION	1
1.1	MOTIVATION	1
1.2	SCOPE	
1.3	Problem Definition	
1.4	What Is Imagery Text?	5
1.5	How Can Text Differ In Its Nature?	
1.6	APPLICATIONS	
1.6.1	News Captions Text	
1.6.2.	Films Graphics Text	
1.7	THESIS ORGANIZATION	9
CHAPTER 2:	LITERATURE REVIEW	11
2.1	Introduction	11
2.2	RELATED PUBLISHED WORK	
2.2.1	Text Detection And Extraction	
2.2.1.1	Caption text Image Extraction	
2.2.1.2.	Graphical Text Image Extraction	
2.2.1.3	Document Text Image Extraction	
2.2.1.4	Scene Text Image Extraction	
2.2.1.5	Heterogeneous Text Image Extraction	17
2.2.2	Text Image Enhancement	19
2.3	TEXT DETECTION AND RECOGNITION FUNDAMENTALS	20
2.3.1	Text Detection	20
2.3.1.1	Text Localization	21
2.3.1.2	Text Verification	21
2.3.2	Text Recognition	22
2.3.2.1	Text Segmentation	23
2.3.2.2	Word Recognition	24
2.4.	SUMMARY AND DISCUSSION	24
CHAPTER 3 (GRAPHICAL TEXT IMAGES IN FILMS	25

3.1	CHALLENGES	25
3.2	TEXT EXTRACTION METHODOLOGIES	25
3.2.1	Text Localization	25
3.2.2	Text Verification	
3.2.2.1	Geometrical Method	26
3.2.2.2.	Deep Learning Neural Networks Method	
3.2.3	Feature Extraction	
3.2.3.1.	Geometrical Method	
3.2.3.2.	Deep Learning Neural Networks Method	28
3.3.	SELECTED SYSTEM	38
3.3.1.	Flow Chart For Films Multimedia application	40
3.3.2.	Applied Technique	41
3.3.2.1.	Adopted Algorithm	42
3.3.2.2.	Text Image Enhancement	
3.3.2.3.	Post Processing.	
3.3.3.	Error Handling And Correction	
3.3.3.1. 3.3.3.2.	Handling Classification Error	
3.4.	DATASET	
3.5.	EVALUATION CRITERIA	
3.5.1.	Execution Performance	
3.5.2.	Text Extraction Performance	
3.6.	SUMMARY AND DISCUSSION	50
CHAPTER 4:	CAPTION TEXT IMAGES IN NEWS	51
4.1.	CHALLENGES	51
4.2.	CAPTION EXTRACTION METHODOLOGIES	55
4.2.1	Hough Transform	55
4.2.2.	Color-Based Edges Technique	
4.3	PROPOSED SYSTEM	59
4.3.1	Flow Chart For News Multimedia Application	
4.3.2.	Applied Technique	
4.3.2.1.	Text Captions Preprocessing	
4.3.2.2.	Text Captions Localization	
4.3.2.3.	Text Captions Classification	61
4.3.2.4.	Text Caption Verification	
4.3.2.5.	Point Feature Matching	
4.3.2.6. 4.3.2.7.	Text Caption Enhancement	
4.4.	DATASET	
4.5.	News Multimedia Application Results	
4.6.	SUMMARY AND DISCUSSION	/3
CHAPTER 5:	SUPER-RESOLUTION FOR TEXT ENHANCEMENT	74
5.1.	WHAT IS SUPER-RESOLUTION?	74
WE PI	ERFORMED A TEXT RECOGNITION EVALUATION FOR BOTH FILMS A	ND NEWS
MULTIMEDIA	APPLICATIONS.	75
a)	Films Multimedia Application	
b)	News Multimedia Application	

5.2.	SUPER-RESOLUTION USING MATHEMATICAL METHOD	77
5.2.1.	Interpolation Process	79
5.2.2.	Image Super-Resolution Reconstruction Process	80
5.2.3.	Least-Squares Estimation	80
5.2.4.	Experiments	82
5.2.5.	Results	83
a)	Manual Calculations	83
b)	Automatic Calculations	83
5.3.	SUPER-RESOLUTION USING AUTOENCODER NEURAL NETWORK	86
5.3.1.	Experiments	87
5.3.2.	Results	95
5.4.	SUMMARY AND DISCUSSION	98
CHAPTER 6 CO	ONCLUSION AND FUTURE WORK	100
REFERENCES		102

List of Tables

Table.3.2 Film application training dataset	46
Table.3.3 Film application testing dataset for text classification.	.47
Table.3.4 Film application graphical caption extraction evaluation dataset containing	
data with multiple languages for text.	47
Table.3.5 System performance comparison for video using either geometrical or neur	al
network method for text or non-text frame classification.	48
Table.3.7 Text extraction performance comparison for video using either geometrical	or
neural network method for text frame detection.	49
Table.3.8 System performance using the system evaluation dataset	49
Table.4.1 Components controlling the state of the layer [82].	62
Table.4.2 Formula for each component [82].	64
Table.4.3 News application training model dataset	67
Table.4.4 News application testing model dataset	67
The AcTiV-D videos are considered extrinsic inputs to the system while the other self-	f-
gathered videos are considered intrinsic inputs	67
Table.4.5 News application system evaluation dataset.	68
Table.4.6 Feature extraction performance using Hough transformation and color-base	d
methods.	.70
Table.4.7 Classification performance for the RNN network	.71
Table.4.8 News stories detection performance for the system.	.72
Table.5.1 Abbyy OCR results before super-resolution for films.	.75
Table.5.2 Abbyy OCR results before super-resolution for news.	.76
Table.5.5 Abbyy OCR Configuration 1 results before and after super-resolution using	5
the mathematical model for Low-Resolution (LR) Arabic news videos	.83
Table.5.6 Abbyy OCR metrics for Configuration 1 using manual calculations for	
Mathematical Method.	.83
The following results are that I got from the automatic calculations for the	
configuration 1 experiment in the thesis before we adjust the parameters and	ļ
use Configuration 2 and Configuration 3	.83
Table.5.7 Character Error Analysis of Configuration 1 for the Mathematical Method	
using Automatic Calculations.	84

Table.5.8 Word Error Analysis of Configuration 1 for the Mathematical Method using
Automatic Calculations84
Table.5.9 Analysis of Results using both Manual and Automatic Methods84
As seen in the table, there was a great difference between errors calculated by hand and
those calculated automatically. This is due to the wrong calculations with a
possible human bias. These wrong results mislead me and caused me almost
one and half year delay to discover and correct. The results are then enhanced
using configuration 2 and 384
Table.5.10 Abbyy OCR Configuration 2 Wrong Recognitions (WR) before and after
super resolution using the mathematical model for LR Arabic news videos85
Table.5.11 Abbyy OCR metrics after super-resolution using the mathematical model
Configuration 2 for Low-Resolution (LR) Arabic news videos85
Table.5.12 Abbyy OCR Configuration 3 Wrong Recognitions (WR) before and after
super-resolution using the mathematical model for Low-Resolution (LR)
Arabic news videos85
Table.5.13 Abbyy OCR metrics after super-resolution using the mathematical model
Configuration 3 for Low-Resolution (LR) Arabic news videos
Table.5.14 Comparison between the different Autoencoder Networks
Table.5.16 Abbyy OCR Wrong Recognitions (WR) before and after super-resolution
using Autoencoder Model for Low-Resolution (LR) Arabic news videos of
Experiment 194
Table.5.17 Abbyy OCR metrics using manual calculations for Autoencoder method of
Experiment 194
Table.5.18 Character Error Analysis of Experiment 1 for the Autoencoder Method
using Automatic Calculations94
Table.5.19 Word Error Analysis of Experiment 1 for the Autoencoder Method using
Automatic Calculations. 95
Table.5.20 Analysis of Results using both Manual and Automatic Methods95
As seen in the table, there was a great difference between errors calculated by hand and
those calculated automatically. This is due to the wrong calculations with a
possible human bias. These wrong results mislead me and caused me almost
one and half year delay to discover and correct. The results are then enhanced
using Experiments 2, 3, 4, and 5.