

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A STUDY ON THE INTERACTION BETWEEN OLTCs AND PV INVERTERS IN LV DISRIBUTION NETWORKS.

By

Eng.Roqaia Mohamed Lotfy Mohamed.

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements of the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA,EGYPT

2021

A STUDY ON THE INTERACTION BETWEEN OLTCs AND PV INVERTERS IN LV DISRIBUTION NETWORKS.

By

Eng.Roqaia Mohamed Lotfy Mohamed.

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements of the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under the Supervision of

Associated Prof.Dr.Mahmoud Mohamed Dr. Mohamed Yousry Sayed

ElectricalPowerandMachinesDepartment FacultyofEngineering—CairoUniversity ElectricalPowerandMachinesDepartment FacultyofEngineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA,EGYPT

2021

A STUDY ON THE INTERACTION BETWEEN OLTCs AND PV INVERTERS IN LV DISRIBUTION NETWORKS.

By Eng.Roqaia Mohamed Lotfy Mohamed.

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements of the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee:

Associated Prof.Dr.Mahmoud Mohamed Sayed ThesisMainAdvisor

ElectricalPowerandMachinesDepartment FacultyofEngineering–CairoUniversity

Prof.Dr.Ahmed Mohmed Ahmed Ibrahim

Internal Exminar

ElectricalPowerandMachinesDepartment FacultyofEngineering-CairoUniversity

Prof.Dr.Walaa Ibrahim Gabr

External Exminar

ElectricalEngineeringDepartment FacultyofEngineering—BenhaUniversity

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA,EGYPT

2021

Engineer: Roqaia Mohamed Lofty.

Date of Birth:2/8/1994 Nationality:Egyptian

E-mail:rakiatalnasab@gmail.com

Phone:01117639252

Address: Maddi-Cairo-Egypt Registration Date: /10/2017 Awarding Date: //2021 Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Associated Prof.Dr.Mahmoud Mohamed Sayed Dr. Mohamed Yousry

Examiners:

Associated Prof.Dr.Mahmoud Mohamed Sayed Prof.Dr.Ahmed Mohmed Ahmed Ibrahim Prof.Dr.Walaa Ibrahim Gabr ThesisMainAdvisor Internal Exminar External Exminar

Title of Thesis: A STUDY ON THE INTERACTION BETWEEN OLTCS AND PV INVERTERS IN LV DISRIBUTION NETWORKS.

Keywords: PV system, on load tap changer, smart PV inverter, voltage regulation.

Summary: With great increasing concern about fossil fuel shortage the incentive motivating to improve alternative energy sources. Between renewable energy sources used, energy through photovoltaic is common. Lately, pv system could be widely used as a viable replacement to traditional sources. Unfortunately, PV systems create several challenges to the operation and voltage control to the utilities, So Voltage regulation is needed. Voltage regulation control methods have been proposed in this thesis considering the inverter of the pv system and OLTC in IEEE15_bus system to regulate the voltage during the studied period by using MATLAB/Simulink. An14_hour simulation is performed considering PV and load variation. The simulation results show that the use of smart PV inverter with OLTC not the best way to regulate the voltage and there is a need to make coordination between them as a voltage regulator devices.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date: /	2021

Signature:

Dedication

TO My parents, my husband, my baby, my sisters.

Acknowledgments

Most of all thanks to the God who gives me the strength while doing this work.

I would like to express my sincere gratitude and thanks to my supervisor **Associated**Prof. Dr. Mahmoud El-Sayed for his invaluable supervision, continued advice, encouragement, and helpful suggestions.

I owe my deepest gratitude to my supervisor, Dr. Mohamed Yousry who has been instrumental in the form of advice and support from the very beginning of this dissertation until its very end. It was his words that helped me understand the subject to great lengths. I truly appreciate all his contributions of time, brilliant ideas, his expert supervision, and extensive knowledge of this subject.

I would like to express my genuine gratitude to my family, especially my parents, my husband, and my sisters. I pray to God to bless them and reward them, as no words can show my gratitude to them. A final word to my husband and my father; without you I could have never been able to achieve this work. Your patience and encouragement were always a source of strength for me. You with my baby "Mohamed" are the shining moon that lightens my life.

Table of contents

Title	Page
Acknowledgments	I
Dedication	II
Table of contents	III
List of Tables	VIII
List of Figures	IX
List of Symbols	XII
List of Abbreviation	XIV
Abstract	XVI
Chapter 1: Introduction	1-7
1.1 Introduction	2
1.2 Overview	4
1.3 Problem statement and Research objective	4
1.4 Literature review	5
1.5 Thesis outline	6
Chapter two: PV system	8-34
2.1 Introduction	9
2.2 Electricity generation from renewable energy resources	9
2.3 Smart Grid concept	10
2.4 PV system types	11
2.4.1 Grid tied PV system	11
2.4.2 Off grid PV system	11
2.4.3 Grid tied PV system with battery back up	12
2.5 Benefits of Grid tied pv system	13
2.6 Grid-tied PV system configurations	14
2.6.1 Single-stage configuration	14
2.6.2 Two-stage configuration	15
2.7 Requirement of Grid tied PV System	15
2.8 Impact of PV system in electrical network	16
2.8.1 Voltage fluctuation	16

Title	Page
2.8.2 Voltage rise	17
2.8.3 Voltage unbalance	17
2.8.4 Harmonics	18
2.9 PV Technology	19
2.9.1 Crystalline silicon	20
2.9.1.1 Monocrystalline silicon	20
2.9.1.2 Multicrystalline silicon	20
2.9.2 Thin Film	20
2.9.2.1 Amorphous silicon	20
2.9.2.2 Cadmium Telluride (CdTe)	21
2.9.2.3 Copper Indium Gallium Selenide (CIGS)	21
2.9.2.4 Gallium arsenide (GaAs)	21
2.10 Modeling of PV Cell	22
2.11 Modeling of PV Module	25
2.12 Modeling of PV Array	26
2.13 The output characteristics of PV system	28
2.14 Effect of Temperature and Irradiance on PV System	31
2.15 MPPT Techniques	32
2.15.1 Perturb and Observe	33
Chapter three: Inverter and On Load Tap Changer	35-74
3.1 Inverter	37
3.2 Classification of Inverter	37
3.2.1 According to output characteristic:	38
3.2.1.1 Square wave inverter	38
3.2.1.2 Sine wave inverter	38
3.2.1.3 Modified sine wave inverter	39
3.2.2 According to source of inverter:	39
3.2.2.1 Current Source Inverter(CSI)	39
3.2.2.2 Voltage Source Inverter(VSI)	39
3.2.3 According to the type of load:	39
3.2.3.1 Single phase inverter	39

Title	Page
3.2.3.1.1 Single phase Half Bridge Inverter	39
3.2.3.1.2 Single phase Full Bridge Inverter	41
3.2.3.2 Three Phase Inverter	43
3.3 Inverter functionalities	43
3.3.1 Power transfer	44
3.3.2 Voltage conversion and Grid synchronization	44
3.3.3 Disconnection and anti-islanding protection	44
3.4 Smart Inverter	45
3.5 Smart inverter features	45
3.5.1 Reactive Power Control.	45
3.5.2 Voltage ride through.	46
3.5.3 Frequency ride through.	46
3.6 Modeling of the system	46
3.7 Inverter control	48
3.7.1 Phase locked loop	48
3.7.2 DC-Voltage link	51
3.7.3 PI controller for DC- voltage link	52
3.7.4 Three phase pulse width modulation	54
3.7.5 Transformation	55
3.7.6 Control real and reactive power	57
3.7.7 Current regulator	58
3.7.8 PI controller for current regulator	59
3.8 Voltage regulation techniques for PV inverter	61
3.9 Tap changer	64
3.10 Tap changing methods	66
3.10.1 Off load (No load or off circuit) tap changing	66
3.10.2 On load tap changing	66
3.11 On Load Tap Changer control	67
3.12 On Load Tap Changing Using Resistor	68
3.13 On Load Tap Changing Using a Reactor	69
3.14 On Load Tap Changer classification	70
3.14.1 Mechanical tan changer	70

Title	Page
3.14.2 Solid state (thyristor) tap changer	71
3.15 Phase shifting transformer	72
3.16 Voltage Regulating transformer	73
Chapter Four: Modeling System	75-88
4.1 Introduction	76
4.2 Modeling System	76
4.2.1 IEEE-15 bus system	76
4.2.2 Grid tied PV system	77
4.2.2.1 PV array Simulink model	79
4.2.2.2 P&O MPPT technique	79
4.2.3 Loading system	79
4.2.4 Modeling of voltage regulator devices	81
4.2.4.1 OLTC modeling	81
4.2.4.2 Smart inverter modeling	82
4.3 Data of Temperature and radiation	87
Chapter Five: Simulation Results	89-99
5.3 Introduction	90
5.4 Standard limit	90
5.5 Simulations	92
5.3.1 Case 1: With high load profile	92
5.3.1.1 Scenario1: Independent voltage regulation by OLTC and smart	02
inverter.	92
5.3.1.2 Scenario 2: Simultaneous voltage regulation by OLTC and smart	05
inverter.	95
5.3.2Case 2: With low load profile	95
5.3.2.1 Scenario1:	95
Independent voltage regulation by OLTC and smart PV inverter.	95
5.3.2.2 Scenario2: Simultaneous voltage regulation by OLTC and smart inverter.	98

Title	Page
Chapter Six: Conclusion and future work	98-97
6.1Conclusion	97
6.2 Future work	97
References	103-106
Appendix's	99-101
Appendix A	99
Appendix B	101