

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ocular Crowding Value in Egyptians with History of Acute Angle Closure Glaucoma

Thesis

Submitted for Partial Fulfillment of Master Degree in **Ophthalmology**

By

Mohammed Ibrahim Abdelmordy Sherief

M.B.B.CH (Ain Shams University)

Under supervision of

Prof. Dr. Amr Saleh Galal Mousa

Professor of Ophthalmology
Faculty of Medicine - Ain Shams University

Prof. Dr. Momen Mahmoud Hamdi

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Hassan Ahmed Elsayed Hassab

Lecturer of Ophthalmology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to Allal, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Amr Saleh Galal Mousa**, Professor of Ophthalmology, Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Momen**Mahmoud Hamdi, Assistant Professor of Ophthalmology, Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Hassan Ahmed Elsayed Hassab**, Lecturer of Ophthalmology,
Faculty of Medicine – Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohammed Ibrahim Abdelmordy Sherief

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
Review of Literature	5
Physiology of Aqueous Humour	5
Anterior Chamber Angle Anatomy	6
Angle-Closure Glaucoma	9
Biometry Methods	22
Patients and Methods	31
Results	36
Discussion	44
Summary	49
Conclusion	51
References	52
Arabic Summary	1

List of Tables

Table No.	Title	Page No.
Table (1):	Medications associated with acut closure crisis (AACG)	
Table (2):	Optical biometers and the technology	used26
Table (3):	Distribution of IOP, C/D ratio, and parameters between participants' eye	
Table (4):	Pairwise comparisons of significant and biometric parameters participants' eyes.	between
Table (5):	Distribution of Ocular Crowding Val between participants' eyes	
Table (6):	Correlation between Ocular Crowdi (OCV) and participants' age and IOF ratio.	and C/D
Table (7):	Cut-off values of the Ocular Crowdi (OCV) for predicting the AACG	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomy of anterior chamber angle	. 6
Figure (2):	Anterior chamber angle	
Figure (3):	(A) Extensive cupping of the or typical of glaucoma, (B) Compared normal optic disk	otic disk d with a
Figure (4):	Acute angle-closure glaucoma	
Figure (5):	Gonioscopy	
Figure (6):	YAG laser PI	
Figure (7):	Angle closure opening after YAG Pl	
_		
Figure (8):	IOL Master 500	
Figure (9):	IOL Master 700	
Figure (10):	Comparison of mean age between and AACG participants	
Figure (11):	Correlation between patient's age Ocular Crowding Value	
Figure (12):	Correlation between C/D ratio and Crowding Value	
Figure (13):	Receiver Operating Characteristic curve of Ocular Crowding Vapredicting AACG	es (ROC) alue for

List of Abbreviations

Abb.	Full term
AACG	Acute Angle Closure Glaucoma
AC	Anterior Chamber
ACD	Anterior Chamber Depth
AL	Axial Length
AUC	Area Under the Curve
BCVA	Best Corrected Visual Acuity
CCT	Central Corneal Thickness
C/D	Cup Disc ratio
CI	Confidence Interval
COPD	Chronic Obstructive Pulmonary Disease
ILM	Internal Limiting Membrane
IOL	Intra Ocular Lens
IOP	Intra Ocular Pressure
ITC	Irido Trabecular Contact
LT	Lens Thickness
LPI	LASER Peripheral Iridotomy
LV	Lens Vault
NPV	Negative Predictive Value
OCT	Optical Coherence Tomography
OCV	Ocular Crowding Value
OLCR	Optical Low Coherence Reflectometry
PACG	Primary Angle Closure Glaucoma

List of Abbreviations (Cont...)

Abb.	Full term
DOL	
PCI	Partial Coherence Interferometry
PPV	Positive Predictive Value
ROC	Receiver Operating Characteristics
SD	Standard Deviation
SSRI	Selective Serotonin Reuptake Inhibitor
SNRI	Serotonin Norepinephrine Reuptake Inhibitor
TCA	$Tri ext{-}Cyclic\ Antidepressants$
US	Ultra-Sound
VA	Visual Acuity
WDT	Water Drinking Test
WTW	White To White distance
$Y\!AG$	Yttrium Aluminum Garnet

Introduction

Claucoma is a leading cause of ocular morbidity and blindness worldwide (*Thylefors et al., 1995*).

Glaucoma is defined as "a group of diseases with certain features including an intraocular pressure that is high for the continued health of the eye" (*Prum et al.*, 2016).

All forms of the disease have in common a characteristic potentially progressive optic neuropathy that is associated with visual field loss as damage progresses, and in which IOP is a key modifiable factor (*Bowling*, 2018).

The term angle closure refers to occlusion of the trabecular meshwork by the peripheral iris [iridotrabecular contact – (ITC)], obstructing aqueous outflow. Angle closure glaucoma can be primary, when it occurs in an anatomically predisposed eye or secondary to another ocular or systemic factor (*Bowling*, 2018).

Previous studies have stated that primary angle closure glaucoma (PACG) is responsible for nearly half the cases of glaucoma-related blindness in the world (*Quigley and Broman*, 2006).

1

It is typically associated with greater rapidity of progression and visual morbidity than POAG (Bowling, 2018).

Primary Angle Closure Preferred **Practice** Pattern® (PPP) guidelines (2016), acute angle closure glaucoma (AACG) was described as a suddenly occluded angle with symptomatic high IOP. Since approximately half of fellow eyes of acute angle-closure glaucoma patients can develop AACG within 5 years, the fellow eye is also at high risk of AACG and, it is of paramount importance to assess the risk of AACG properly (Prum et al., 2016).

Notably, many ways have been used for detecting a closed angle to diagnose primary angle closure disease (PACD) instead of assessing the risk of AACG. For example, gonioscopy examination is the current gold standard for the detection of PACD (Nongpiur and Wei, 2013).

Objective measurements of the depth of the AC are often clinically useful in glaucoma management. Indications include assessment of PAC risk, and monitoring of progression in conditions where the AC is shallower, such cilio-lenticular block. Older methods used slit lamp with or without special attachment, but an accurate and repeatable measurement can be obtained using ultrasonography or optical interferometry methods (Bowling, 2018).

The traditional biometric parameters such as anterior chamber depth or lens vault are not strong predictors of AACG. We speculate that the crowding condition of the eye would be a more important factor to trigger an AACG. Ocular crowding value can be calculated as follows: (LT+CCT-ACD)/AL; LT: lens thickness, CCT: central corneal thickness, ACD: ant. Chamber depth and AL: axial length of the globe (Wei et al., 2018).

AIM OF THE WORK

The aim of the work is to identify the risk of AACG through evaluation of ocular biometric parameters of Egyptians with history of AACG and comparison with their uninvolved fellow eyes and another group of healthy eyes, using AL Scan optical biometer.