

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

The Effect of Two Different Bar Materials Constructed with CAD/CAM Technology on Implant Retained Mandibular Overdentures: Radiographic Evaluation

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University in partial fulfillment of the requirements for the Doctoral degree in oral and maxillo-facial Prosthodontics

Submitted by:

Nora Mohamed AbdulKader

B.D.S, MUST University, 2009

M.D.S, Ain Shams University, 2015

Faculty of Dentistry
Ain Shams University
2021

Supervised by:

Dr. Ingy Amin Talaat

Professor of Removable Prosthodontics
Faculty of Dentistry
Ain Shams University

Dr. Noha Helmy Nawar

Professor of Removable Prosthodontics
Faculty of Dentistry
Ain Shams University

Dr. Eatemad Rekaby Taha

Professor of Removable Prosthodontics
Faculty of Dentistry
Ahram Canadian University

Dr. Hebatallah Tarek Mohamed

Assistant Professor of Removable Prosthodontics
Faculty of Dentistry
Ain Shams University

ACKNOWLEDGEMENT

I'm very grateful to **Allah** for without his graces and blessings, this study would not have been possible.

Immeasurable appreciation and deepest gratitude to *Dr. Ingy Amin Talaat*, Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University, under whose supervision I had the honor to proceed with this study, for her guidance and constant supervision, as well as for her support and words of encouragement and also for giving a long period of time to finish this work.

I would like to express my deepest thanks to *Dr. Noha Helmy Nawar*, Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University, for her intensive supervision, kind help, valuable comments, and advice, will always be sincerely remembered.

My deepest thanks and appreciations are extended to my dear mentor *Dr. Eatemad Rekaby Taha*, Professor of Prosthodontics, Faculty of Dentistry, Ahram Canadian University, for providing me with all the facility that was required, as well as for her encouragement, and support.

I would also like to extend my gratitude to *Dr. Hebatallah Tarek*, *Mohamed* assistant professor of prosthodontics, Faculty of Dentistry, Ain Shams University, for her immeasurable support, extreme patience, endless encouragement, and support.

I owe special thanks to my colleagues, and staff members of removable Prosthodontics Department, Faculty of Dentistry, Ahram Canadian University, and also the staff members of prosthodontics department, Ain Shams University for their great support and a great role in completion of this work.

Dedication

I would like to dedicate this thesis to my beloved Mother, Father, Brother, and Sisters as well as my little young kids Karma and yahia

CONTENTS

	Page
LIST OF FIGURES	
LIST OF TABLES	
INTRODUCTION	
REVIEW OF LITERATURE	
AIM OF THE STUDY	
MATERIAL AND METHODS	
RESULTS	
DISCUSSION	
CONCLUSION	
RECOMMENDATION	
REFERENCES	
ARABIC SUMMARY	

LIST OF FIGURES

Fig.	Title	Page No.
1	Intra-oral examination	49
2	Pre-operative radiographic examination using CBCT	50
3	Upper and lower secondary impression	51
4	Mounting of upper and lower cast on semi-adjustable articulator	52
5	Try-in of waxed up denture	53
6	Denture insertion	53
7	Radiographic markers on lower denture	54
8	Dual scan procedure	55
9	Virtual implant planning	56
10	3D Surgical guide	56
11	Silicone occlusal index	58
12	Fixation of surgical guide in the patient's mouth with anchorage pins	58
13	Sequential drilling for each implant through the surgical guide	59
14	Report provided with the surgical guide	59
15	Dental implant picked up with a finger driver	60
16	Manual ratchet wrench	60
17	Cover screw	61
18	Healing abutment	62
19	Impression copings splinted with duralay	63
20	Secondary impression using medium rubber base	64
21	Bar design using Exocad software	65
22	Restoration type was selected as bar, and design was selected as Rhein OT Bar-A	66

Fig. No	Title	Page No.
23	Alignment of the bar bucco-lingually	66
24	Alignment of the bar mesio-distally and occluso-gingivally	66
25	Smoothening and roundation of any roughness	67
26	Position of the bar in the blank was determined	67
27	Milled PMMA verification Jig	67
28	Milled PEEK and CO-Cr bars in the patient mouth	69
29	Blocking out under the bar with putty rubber base material	71
30	Plastic clip attachment secured over the bar	71
31	Plastic clips picked up in the final denture	71
32	Measurements of bone heights around the implants	77
33	Bar chart showing mean difference of bone loss (mm) in group (I)	80
34	Bar chart showing mean difference of bone loss (mm) in group (II)	84
35	Bar chart showing mean bone loss (mm) in both groups	81

LIST OF TABLES

Table No	Title	Page No.
1	Mean difference and standard deviation (SD) values of bone loss (mm) in group (I)	73
2	Mean difference and standard deviation (SD) values of bone loss (mm) in group (II)	76
3	Mean, Standard deviation (SD) values of bone loss (mm) in both groups	78

△ Introduction

Introduction

Oral rehabilitation with an overdenture on splinted or unsplinted implants is considered the standard care in cases of mandibular edentulism. Numerous studies have shown that the mandibular implant overdenture is a simple and effective solution and leads to significant improvement of patient-based outcomes as compared to conventional dentures.

The use of a wide variety of attachment systems, including stud, magnet and bar attachments have proven both clinically predictable and effective results. The design of attachments should provide equal implant-tissue support and optimum force distribution around the implants to allow bone loading within physiologic levels.

Implants splinted together with bars may decrease the risk of overload to each implant as a result of a greater surface area, load sharing between implants and improve biomechanical distribution ⁽¹⁾. Bar attachments are classified according to their biomechanical behavior into rigid and resilient attachment. In comparison to resilient bar attachment, rigid anchoring of removable prostheses creates stable occlusal plane, reduces loading of denture-bearing areas, and minimizes posterior mandibular ridge resorption. One of the major drawbacks of rigid bar attachment is overloading of the abutments, however resilient bar attachment encourages torsion-free load transmission to implants dentures. The main disadvantages of bar attachments are the need for a large prosthetic space and the risk of mucositis due to an inadequate oral hygiene under the bar.

With prefabricated bar designs, lack of accurate adaptation of the denture base to the bar superstructure, rotation and lateral movement of the denture are unavoidable. In order to improve the fit of the overdenture framework electrical discharge machining (EDM) and spark erosion can be used, but this procedure is costly and technique-sensitive ⁽²⁾. Milled bars have been suggested as a less expensive alternative to EDM. Implant-supported milled bars are bars with precision attachments and rigid anchorage, made by casting, electroerosion or CAD-CAM (computer-aided design and computer- aided manufacturing). Traditional castings have a major limitation inherent in the process, which is distortion of the casting with increasing size of the pattern. CAD/CAM fabrication of bars and frameworks has resulted in elimination of distortion, better fit, and fewer fabrication steps ⁽²⁾.

1

Introduction Introduction

Custom-fabricated bar could be accurately milled to develop guide planes that allow accurate adaptation of the denture base to the milled bar providing stability and resistance against rotational and lateral forces. Custom made bars are also more likely to follow the ridge shape when pronounced ridge curvature is encountered, without invading the tongue space.

Dental alloys for prosthodontic restorations have developed in type and number over the past few years. Generally, Cobalt-Chromium (Co-Cr) alloys have been widely used for several decades in the field of restorative dentistry. Their mechanical properties combined with good biocompatibility have been clearly demonstrated.

Recently, new materials based on polyetheretherketone (PEEK) were introduced to the market and have been marketed as a potential alternative material for surgical procedures such as interbody fusion cages or dental implants with a similar stress distribution as titanium implants. Being an inert material, PEEK has high biocompatibility and has shown a successful clinical history in spinal implants over more than a decade and a half. In addition, PEEK material has a modulus of elasticity nearly the same as that of bone so it can reduce stresses transferred to the abutment teeth. Additional advantages of this polymer material are elimination of allergic reactions and metallic taste, high polishing qualities, low plaque affinity, and good wear resistance ⁽³⁾.

In modern dentistry, advances in computer aided designing (CAD) and computer aided manufacturing (CAM) have resulted in the development of a considerable number of CAD/CAM systems for the fabrication of different types of dental restorations. Today, implant-supported restorations fabricated by CAD/CAM technology are routinely used in dentistry. A wide range of computer-aided subtractive and additive manufacturing technologies can be used with the associated restorative materials. Milled restorations from blocks of homogeneous materials such as metal, resin, or porcelain should eliminate some of the problems inherent in dental castings ⁽⁴⁾.

Review of literature

Dental Implants

The provision of complete denture had been the traditional treatment modality used for rehabilitation of edentulous patients. The outcomes with complete denture usually do not meet the esthetic, psychological or social needs of the patients. This treatment modality is associated with its own set of complications and problems; additionally bone loss is further accelerated when the patient is wearing a poorly fitting denture ⁽⁵⁾.

Rehabilitation of tooth loss with dental implant was documented and shown to have more than 98% of success rate ⁽⁶⁾. The stabilization of the lower denture with at least two endosseous implants is applied for more than 20 years and was recommended by Feine ⁽⁷⁾ and co- workers in the McGill consensus statement as standard therapy in 2002 and considered to be the first choice standard care for the edentulous mandible ^(8, 9).

Introduction of dental implant has improved the outcomes and quality of life for many edentulous patients ⁽¹⁰⁾. The use of dental implants for restoring function and esthetics, ⁽¹¹⁾ and for improving masticatory efficiency and individual satisfaction is a well-accepted treatment modality with long term success ⁽¹²⁾.

There are three basic types of implants; *eposteal implants* that receive their primary bone support by leaning on the residual bone of the mandible, *transosteal* (*transosseous*) *implants* which composed of a metal plate and transosteal pins or posts, and *endosteal* (*endosseous*) *implant* that is a dental implant placed into the alveolar and/or basal bone of the mandible or maxilla and transecting only one cortical plate. There are two basic types of endosseous implants, **blade**, and **root form** (13).

Endosseous root form implants are the most commonly used implant type. It is composed of an anchorage component, termed the endosseous dental implant body, which ideally is within the bone, and a retentive component, termed the endosseous dental implant abutment (13, 14).

Many materials have been used for manufacturing dental implants such as; carbons, polymers, ceramics and metals ranging from alloys of gold, titanium, and nickel-chrome-vanadium to commercially pure titanium (15). Typically, dental

implants are made out of grade 4 commercially pure Ti because it is corrosion resistant and stronger than other grades. However, Ti alloys are also used since it is stronger and more fatigue resistant than pure Ti ⁽¹⁶⁾.

Dental implants can be further classified according to the implant body design into threaded (screw-shaped implants) and non-threaded (cylinder implants) (17). Cylinder or Press-fit implant is an endosseous design consisting of a straight cylinder that is pushed or tapped into the surgical osteotomy. They gained widespread popularity in the late 1980s to early 1990s because of their simple surgical placement protocol (18). Threaded type implants are the most popular type of root implant due to their proven success (19). Threads are used to maximize initial contact with surrounding bone, improve initial stability, and enlarge the implant surface area, and favor dissipation of the interfacial stresses (17).

According to the implant surface topography, root form implants are classified into implants with smooth surface, rough surface, or porous surface. Implant surface quality influences the wound healing at the implantation site and subsequently affects the osseointegration ⁽²⁰⁾. As a result, several surface modifications have been developed in an effort to modify the surface roughness of the implant to promote the osseointegration process, particularly with poor bone quality ⁽¹⁸⁾.

> Surgical Protocols

There are different surgical protocols that can be used for placement of two-piece implant systems: one stage and two stage. Using the standard, two-stage protocol, the implant body with a cover screw is submerged below the soft tissue until the initial bone healing has occurred. During a second-stage surgery, the soft tissues are reflected to attach a component that passes from the implant connection, through the soft tissue, and enters the oral cavity⁽¹⁸⁾.

With one-stage surgery, the surgeon places the implant body and a temporary healing abutment, which emerges through the soft tissue. During the restorative process, the healing abutment is removed and the prosthetic abutment or restoration can be connected ⁽¹⁸⁾.