

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Can Plasma Cholinesterase act as an Adjuvant Prognostic Index in acute Burn Cases? A Prospective Clinical Study

Thesis

Submitted for Partial Fulfilment of
Master degree in Forensic Medicine and Toxicology

By

Yasmine Fikry Mohamed Mohamed

Demonstrator of Forensic Medicine and Toxicology

Under supervision of

Prof. Amany Elsayed Abdel Rahman

Professor of Forensic Medicine and Toxicology Faculty of Medicine - Ain Shams University

Prof. Mohamed Ahmed Sayed Mostafa El-Rouby

Professor of Plastic and Reconstructive Surgery Faculty of Medicine - Ain Shams University

Dr. Dalia Mohamed Nabil Zaki

Lecturer of Forensic Medicine and Toxicology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University

2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Amany Elsayed**Abdel Rahman, Professor of Forensic Medicine and Toxicology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Mohamed Ahmed**Sayed Mostafa El-Rouby, Assistant Professor of Plastic and Reconstructive Surgery, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Dalia Mohamed Mabil Zaki**, Lecturer of Forensic Medicine and
Toxicology, Faculty of Medicine, Ain Shams University,
for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Masmine Fikry Mohamed Mohamed

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Structure of Skin	4
℧ Burn Classification	7
Pathophysiology of Burn	24
Complications of Burn	30
℧ Management	39
Burn Indices	44
Patients and Methods	52
Results	55
Discussion	84
Conclusion	104
Recommendations	105
Summary	106
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACS	Abdominal compartment syndrome
	- · · · · · · · · · · · · · · · · · · ·
	A cetyl choline sterase
<i>APPs</i>	Acute Phase Proteins
<i>AUC</i>	Area Under curve
BCG	Bromocresol green
<i>BSA</i>	Burn surface area
BChE	Butyrylcholinesterase
<i>ChE</i>	Cholinesterase
<i>DAMP</i>	Danger-associated molecular pattern molecules
HAS	Human albumin solutions
<i>IL-6</i>	Interleukin 6
<i>IL-8</i>	Interleukin 8
<i>IVF</i>	Intra venous fluid
<i>MIF</i>	Macrophage migration inhibitor factor
<i>NPV</i>	Negative predictive value
<i>NS</i>	Normal saline
<i>OMP</i>	Oxidati-vely modified proteins
PL	P late lets
<i>PPV</i>	Positive predictive value
<i>PCT</i>	Procal citon in
ROC	Receiving operating characteristic curve
TBSA	Total burn surface area
TNF-α	Tumour necrosis factor alpha

List of Tables

Table No.	Title	Page No.
Table (A):	Management of burn	43
Table (B):	Management of burn according to bu thickness	
Table (1):	Descriptive data of the acute burned	group55
Table (2):	Student t test, comparison between acute burned groups as regard parameters in day 1 sample:	s studied
Table (3):	ANOVA one-way statistical analy studied parameters between the cor and the acute burned group in 1 st , 5 day samples:	$_{ m th}^{ m th}$ and $14^{ m th}$
Table (4):	Spearman correlation coefficients terms the studied parameters levels and the surface area (TBSA):	st between total burn
Table (5):	Independent -t-test, comparison survivors and non survivors sub regards studied parameters at studied periods:	groups as different
Table (6):	Spearman correlation coefficient test the studied parameters and TBSA in and non survivors burned patients:	st between n survivors
Table (7):	Cut off points, AUC, sensitivity and for plasma cholinesterase, albumin a acute burned group in day 1 sample:	and CRP in
Table (8):	Cut off points, AUC, sensitivity and for plasma cholinesterase in acu group in the different study periods:	te burned
Table (9):	Cut off points, AUC, sensitivity and for platelets in acute burned gro different study periods:	specificity up in the

List of Tables (Cont...)

Table No.	Title	Page No.
Table (10):	Cut off points, AUC, sensitivity at for albumin in acute burned g	roup in the
Table (11):	different study periods: Cut off points, AUC, sensitivity at for CRP in acute burned group in	nd specificity
Table (12):	study periods:	tivity with acute burned

List of Figures

Fig. No.	Title	Page No.
Figure (A):	Rule of Nine	13
Figure (B):	Rule of Nine	14
Figure (1):	Comparison between acute burned and control group as regards cholinesterase level in day 1	plasma
Figure (2):	Comparison between acute burned and control group as regards album in day 1	in level
Figure (3):	Comparison between acute burned and control group as regards CRP day 1	level in
Figure (4):	Plasma cholinesterase level at d study periods	lifferent
Figure (5):	Platelets level at different study period	iods60
Figure (6):	Serum albumin level at different periods.	•
Figure (7):	C Reactive protien level at different periods.	
Figure (8):	Correlation between TBSA and cholinesterase level (day1)	plasma
Figure (9):	Correlation between TBSA and cholinesterase level (day 5)	plasma
Figure (10):	Correlation between TBSA and cholinesterase level (day14)	plasma
Figure (11):	Correlation between TBSA and p count (day1)	olatelets
Figure (12):	Correlation between TBSA and p count (day5)	olatelets
Figure (13):	Correlation between TBSA and p count (day14)	olatelets

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Correlation between TBSA and level (day 1).	
Figure (15):	Correlation between TBSA and level (day 5)	
Figure (16):	Correlation between TBSA and level (day 14)	
Figure (17):	Correlation between TBSA and C (day5)	
Figure (18):	Correlation between TBSA and C (day 14)	
Figure (19):	The difference between the level of cholinesterase in survivors at survivors groups at different study	nd non
Figure (20):	The difference between the level of in survivors and non survivors gradifferent study periods	platelets roups at
Figure (21):	The difference between the level of in survivors and non survivors different study periods	albumin groups
Figure (22):	The difference between the level of survivors and non survivors gr different study periods	f CRP in coups at
Figure (23):	Correlation between plasma cholin and TBSA in day 1 in survivors gro	nesterase
Figure (24):	Correlation between plasma cholin and TBSA in day 14 in survivors su	nesterase
Figure (25):	Correlation between CRP and TBS 1 in survivors subgroup	
Figure (26):	Correlation between CRP and TBS 5 in survivors subgroup	•
Figure (27):	Correlation between CRP and TBS 14 in survivors subgroup	-

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (28):	ROC curves for sensitivity and specific plasma cholinesterase, albumin and acute burned patients in day 1 sample	CRP in
Figure (29):	ROC curves for sensitivity and specifor plasma cholinesterase in day 1, 5 samples.	and 14
Figure (30):	ROC curves for sensitivity and spe for platelets in day 1, 5 and 14 samp	•
Figure (31):	ROC curves for sensitivity and spe for albumin in day 1, 5 and 14 samp	•
Figure (32):	ROC curves for sensitivity and spe for CRP in day 1, 5 and 14 samples	v

Introduction

burn is a tissue injury from thermal application or from the absorption of physical energy or chemical contact (*Nascimbeni et al.*, 2018).

Millions of people around the world are hospitalized for the treatment of burn each year. The daily cost of care for a burn victim is tremendous. The economic loss to any nation is staggering. This includes painful and lengthy hospitalization, multiple stages of surgery, permanent disfigurement and disability, prolonged rehabilitation, loss of income. Also job and enormous financial burden on both the burned victims and community. Burn itself and its complications can lead to permanent changes in patient life and that of his family (*Friedstat et al.*, 2017).

The importance of burn prognostic indices lies not only on the prediction of the outcome of an individual patient, but also on the distribution of the patients in comparable groups of severity for therapeutic purposes. Although the realistic prediction of the outcome of an individual patient is the first and main question of patient family, the quantitative measurement of a patient illness using these indices is of great importance for the burn center in deciding its therapeutic policy. The more accurate the index, the more useful it is for the latter purpose for these reasons (*Nascimbeni et al., 2018*).

Since several complications may occur after burn injury and some of them are fatal, the allegation of negligence may not be unusual (Nakache et al., 2011).

The patient relatives may claim that the death is the result of the improper management of the treating medical team rather than the unavoidable complications (Snell et al., 2013).

This allegation may arise also in homicidal deaths, when death in burned victims occurred after duration of hospital admission. It is of great medico-legal importance in these cases to decide if the death was due to physician negligence or as an anticipated consequence of burn injury. This reveals the need for investigating predictors of mortality in cases of burn injuries that can be determined in early stage of burn before start of medical interventions to reflect severity of injury and body response to it (Aktas et al., 2018).

In addition, prediction of outcome for burned patients is essential to support clinical decision making, improve overall patient management, alleviate individual suffering, minimize the complications and improve hospital resource allocation (Walczak and Velanovich, 2018).