

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University
Faculty of Pharmacy
Pharmacology and Toxicology Department

Pharmacological study on the potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson's disease in rats"

A thesis submitted for the partial fulfillment of requirements for the degree of Doctor of Philosophy (PhD) in Pharmaceutical Sciences (Pharmacology & Toxicology)

<u>**By**</u>

Christine Nathan Habib Demian

M.Sc. degree in Pharmaceutical Sciences, Pharmacology and Toxicology (2014) Assistant Lecturer of Pharmacology and Toxicology, Faculty of pharmacy, Ain Shams University

Under the supervision of

Professor Somia Ibrahim Masoud

Professor of Clinical Pharmacology, Faculty of Medicine, Ain Shams University.

Professor Mohamed Ragaa Mohamed

Dean, Professor of Biochemistry and Molecular Biology, Faculty of Science, Ain Shams University.

Professor Mariane George Tadros

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Dr. Mai Fathy Tolba

Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Faculty of Pharmacy Ain Shams University (2022)

Acknowledgements

No words can be ever said expressing my deep thanks to GOD for helping, supporting, encouraging and blessing me with generous professors while carrying out my research who spared no effort to give me a hand.

I would like to express my great appreciation to **Prof. Somia Ibrahim Masoud**, Professor of Pharmacology, Faculty of Medicine, Ain Shams University, for her indispensable help throughout the whole thesis work as well as her guidance and positive insights.

I am greatly thankful to **Prof. Mohamed Ragaa Mohamed,**Professor of Biochemistry and Molecular Biology, Faculty of Science,
Ain Shams University, for his guidance and support throughout the supervision of my thesis.

I am also greatly thankful to **Prof. Mariane George Tadros**, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her indispensable help throughout the whole thesis work as well as her continuous support, and guidance.

I would like to deeply thank **Dr. Mai Fathy Tolba**, Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her help in thesis writing as well as her continuous help and support throughout the whole thesis work.

I would like to thank **Dr. Adel Bakir**, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his great effort in accomplishing the histological investigation.

Also I would like to thank **Dr. Dina Sabry Abdelfatah**, Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University for her technical assistance in western blotting and **Dr. Mohamed Abdelrazik Khattab**, Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University for his kind help in the immunostaining.

It is my great pleasure to thank all my Professors, Doctors and colleagues in the department of Pharmacology and Toxicology, Ain Shams University, especially **Dr Esther Tharwat** and **Dr Haidy Effat,** for providing me knowledge and help.

Finally, but of great importance, I wish to express my deep gratefulness and thanks to my family for their support and continuous prayers and for all what they endured to tolerate and uphold me in finishing this thesis. Acknowledgements can never be made to all those who have nourished my intellectual life. Still I must try to give credit where credit is due.

List of Contents

Subject	Page
Introduction	1
I- Parkinson's Disease (PD)	1
I-1: Background	1
I-2: Epidemiology	1
I-3: Risk factors	2
I-4: Classification of parkinsonism	6
I-5: Clinical manifestations	7
I-6: Diagnosis	8
I-7: Pathophysiology	9
I-8: Pathogenesis	12
I-9: Managment	21
II. Animal models	28
II-1: Toxin-based models	28
II-2: Gene-based models	32
III. Diosmin	34
III-1: Pharmacodynamics of diosmin	34
III-2: Safety and toxicity	39
III-3: Pharmacokinetics of diosmin	39
Aim of the work	40
Materials and Methods	42
I- Experimental Design	42
II- Animals	45
III- Materials	45

IV- Methods	53
V-Statistical analysis	65
Results	66
Discussion	122
Summary and Conclusions	128
References	133
Arabic summary	

List of Abbreviations

6-OHDA	6-Hydroxydopamine
AADC	Aromatic amino acid decarboxylase
Ab	Antibody
Αβ	Amyloid β peptide
ANOVA	Analysis of variance
AD	Alzheimer's disease
Bax	Bcl-2-associated X protein
BBB	Blood-brain barrier
Bcl-2	B-cell lymphoma 2 protein
CBD	Corticobasal degeneration
COMT	Catechol-O-methyl-transferase
COX-2	Cyclooxygenase-2
DA	Dopamine
DAT	Dopamine transporter
DBS	Deep brain stimulation
DM	Diosmin
ELISA	Enzyme-Linked Immunosorbent Assay
FGF2	Fibroblast growth factor 2
GSH	Glutathione
GWAS	Genome-wide association study
H&E	Hematoxylin and eosin
HDL	High-density lipoproteins
HO-1	Heme oxygenase-1
IL-1β	Interleukin-1β
IL-6	Interleukin-6
INF-γ	Interferon-γ
iNOS	Inducible nitric oxide synthase
LBs	Lewy bodies
L-DOPA	3,4 Dihydroxy-L-phenylamine
LDL	Low-density lipoproteins

LPS	Lipopolysaccharide
LRRK2	Leucine-rich repeat kinase 2
MAO-B	Monoamine oxidase type-B
MAPK	Mitogen activated protein kinase
MDA	Malondialdehyde
MPP ⁺	1-Methyl-4-phenylpyridinium
MPTP	1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
MSA	Multiple system atrophy
NF-κB	Nuclear Factor kappa B
Nrf2	Nuclear factor erythroid 2-related factor 2
PBS	Phosphate buffer saline
PD	Parkinson's disease
PET	Positron emission tomography
PGE2	Prostaglandin E2
pJAK2	Phosphorylated janus kinase 2
p.o.	Peroral administration
PSP	Progressive supranuclear palsy
pSTAT3	Phosphorylated signal transducers and activators of transcription
REM	Rapid eye movement
ROS	Reactive oxygen species
rpm	Revolutions per minute
s.c.	Subcutaneous administration
SNpc	Substantia nigra pars compacta
SNCA	α-synuclein-encoding gene
SOD	Superoxide dismutase
SP	Streptavidin peroxidase
SPECT	Single-photon emission computed tomography
STN	Subthalamic nucleus
TBI	Traumatic brain injury
TH	Tyrosine hydroxylase
TLRs	Toll-like receptors

TNF-α	Tumor necrosis factor
TNFR1	Tumor necrosis factor receptor 1
TxA2	Thromboxane A2
VEGF	Vascular endothelial growth factor
VMAT2	Vesicular monoamine transporter-2
UPS	Ubiquitin proteasomal system

List of Figures

Figure Number	Figure Title	Page
i	Schematic representation of the normal (A) and diseased (B) nigrostriatal pathway	10
ii	Schematic representation of Lewy bodies progression in PD	12
iii	Possible mechanisms for dopaminergic neurodegeneration in PD	15
iv	Neuroinflammatory response involved in PD	19
V	Dopaminergic drug targets in Parkinson's disease	24
vi	Toxin-based animal models of PD	31
vii	Chemical structure of rotenone	30
viii	Chemical structure of diosmin	34
ix	Experimental design	44
X	Locomotor activity detector	50
xi	Rotarod apparatus	51

xii	Bar (A) and grid (B) used for catalepsy assessment	52
xiii	Standard calibration curve for TNF-α	61
1	Effect of treatment with different doses of diosmin on rotenone- induced catalepsy in rats	68
2	Effects of treatment with different doses of diosmin on rotenone-induced motor impairment in rats	71
3	Effects of treatment with different doses of diosmin on rotenone- induced hypokinesia in rats	74
4	Effects of treatment with different doses of diosmin on rotenone-induced body weight reduction in rats	77
5	Representative photomicrographs of H&E-stained rat midbrain sections	79
6	Representative photomicrographs of H&E-stained rat whole striatal sections.	80
7	Representative photomicrographs of toluidine- blue stained rat midbrain sections.	82
8	Representative photomicrographs of toluidine- blue stained rat striatal sections	83

9	Quantitative analysis of midbrain and striatal neuronal damage calculated as the percentage of degenerated neurons	84
10	Immunohistochemical staining of substantia nigra TH positive cells	86
11	Immunohistochemical staining of striatal TH positive cells	87
12	Quantitative analysis for the number of TH positive dopaminergic neurons in the substantia nigra	89
13	Quantitative analysis for TH positive fibers in the striatum expressed as area %	90
14	Immunohistochemical staining of midbrain α-synuclein positive cells	93
15	Immunohistochemical staining of striatal α-synuclein positive cells	94
16	Quantitative image analysis for α-synuclein immunohistochemical staining	96
17	Immunohistochemical staining of midbrain Bax positive cells	98
18	Immunohistochemical staining of striatal Bax positive cells	99

19	Immunohistochemical staining of midbrain Bcl-2 positive cells	100
20	Immunohistochemical staining of striatal Bcl-2 positive cells	101
21	Western blot analysis of Bax/Bcl-2	101
22	Effect of diosmin on Bax/Bcl-2 ratio in the midbrains and striata of rotenone-treated rats	103
23	Densiometric quantitation of striatal Bax/Bcl-2 ratio	103
24	Effect of diosmin on TNF-α concentration in the midbrains and striata of rotenone-treated rats	106
25	Immunohistochemical staining of midbrain NF-κB (p65) positive cells	108
26	Immunohistochemical staining of striatal NF-κB (p65) positive cells	109
27	Quantitative image analysis for NF-κB (p65) immunohistochemical staining	111
28	Immunohistochemical staining of midbrain Nrf-2 positive cells	113
29	Immunohistochemical staining of striatal Nrf-2 positive cells	114
30	Quantitative image analysis for Nrf2 immunohistochemical staining	116