

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

GENETIC POLYMORPHISM IN SOME CUCURBITS

By

Walid Wafic Mohamed Badawy B.S., C. (Agric.), Zagazig University (1997)

Thesis

Submitted In Partial Fulfillment Of The Requirements For The Degree Of Master Of Science Agriculture Botany

Genetics

Supervised By

Prof. Dr.

1 El-Raheem A. Abd El-Raheem rofessor of Genetics, Botany Dept. F culty of Agric, Suez Canal University A.A. Abdel Kal

Adel A. Guirgis

Professor of Molecular Biology & Vice Dean of the Genetic Engineering And Biotechnology Institute - Menofiya University Dr. S. M. Everst

Salah M.A. Greish

Associate Professor of Genetics, Botany Dept. Faculty of Agric, Suez Canal University

Bwad B. Sarha-

Department of Agriculture Botany 1915/2003 Faculty of Agriculture

Suez Canal University

2003

Author	: Walid Wafic Mohamed Badway
Title	: Genetic polymorphism in some cucurbits
Faculty	: Faculty of agriculture
Department	: Botany Department
Location	: Ismailia governorate
Degree	: Master of Science in Agriculture Science (Genetics)
Date	: 17/3/2003
Language	: English Language

Supervision Committee:

Pro. Dr. Abd El-Reheem A. Abd El-Reheem

Professor of Genetics, Botany Dept. Faculty of Agric.

Suez Canal University.

Prof. Dr. Adel A. Guirgis

Professor of Molecular Biology & Vice Dean of the Genetic Engineering And Biotechnology Inst. Menofiya University

Dr. Salah M.A. Greish

Associate Professor of Genetics, Botany Dept. Faculty of Agric, Suez Canal University

Abstract:

Six Cucumis melo and seven Citrullus sp. genotypes were used in combining ability to study the genetic divergence and mode of gene actions based on eight quantitative characters. The nature of combining ability were estimated among parents and their hybrids to determine the effect of both additive and non-additive gene actions. The zymograms of three isozyme systems; esterase, malate dehydrogenase and glutamate dehydrogenase were obtained using native non-dissociating discontinuous PAGE technique.

Significant positive and negative heterotic effects were observed for almost all characters over either mid-parent or better parent values, indicating that no single F₁ hybrid showed heterosis for all the characters. From the analysis of GCA and SCA effects in different quantitative characters showed that almost all parents posses significant GCA for different quantitative characters, indicating that none of the parents could be considered to be the best combiner of all the characters. The best specific cross combinations, which exhibited significant desirable SCA effects for average fruit weight was P.I 124111 x Hale's Best Jumbo. The genetic divergence among the *C.melo* and *Citrullus sp.* genotypes and their F₁ hybrids based on genetic distances indicated that there was no relationship between the parental divergence and their hybrids.

The broad sense heritability estimates was higher than narrow sense for all character, indicating the prevalence of non-additive gene effects for controlling the studied characters.

Variation in isozyme banding patterns for C.melo parental genotypes and their hybrids showed that, each of these F_1 hybrids had intermediate genetic background between their corresponding parents.

Keywords:

Genetic divergence, heterosis, combining ability PAGE technique, heritability.

APPROVAL SHEET

Name of candidate: Walid Wafic Mohamed Badawy

Title of thesis: Genetic Polymorphism in some cucurbits

Thesis

Submitted for the Degree of Master in Agriculture Science

(Genetics)

Faculty of Agriculture, Suez Canal University

Approved By

Prof. Dr.: Ali Z. A. Abd El-Salame A 25 Abletela	U
Prof. Dr.: Abd El-Rhman S. Mandour As Mad	_
Prof. Dr.: Abd El-Reheem A. Abd El-Reheem D. A. Abdel La	L

Dr.: Salah M. A. Greish S. M. Greish

(Committee in Charge)

Date: / 7/ 3 /2003

ACKNOWLEDGEMENT

I wish to express my deep gratitude and sincere appreciation to *Prof. Dr. A. A., Abd El-Raheem* Professor of Genetics, Agricultural Botany Department, Faculty of Agriculture, Suez Canal University for his supervision and valuable help to accomplish this work.

Grateful acknowledgement and deep thanks are also expressed to *Prof. Dr. A. A. Guirgis*, Professor of Molecular Biology, Vice Dean of the Genetic Engineering and Biotechnology Institute, Monefiya University for suggesting the problem, supervision and invaluable help in lab. and statistical analysis, preparing and reviewing the manuscript.

Deep thanks are also due to *Dr. S. M. A. Greish*, Associate Professor of Genetics, Agricultural Botany Department, Faculty of Agriculture, Suez Canal University for his supervision and valuable help and his continuous encouragement and faithful help.

I can't find words to express my thank fullness to *Dr. A. H. M El-Fouly*, Associate Professor and Head of El-Kassasein horticultural research station and head of biotech. lab. also for invaluable help in lab. analysis and I would like to thank to *Dr. S. A. Swidan*, associate professor of Physiology for her useful assistance and co-operation.

Finally, I would like to express may thank to my family and all my friends for their encouragement during this work.

CONTENTS

Page
I- Introduction
II- Review of Literature
A- Genetic divergence of cucumis melo, Citrullus Sp.
based on quantitative characters3
B- Genetic association among quantitative characters7
C- Analysis of combining ability and gene effects8
D- Isoenzyme polymorphism14
III- Material and Methods19
A- Materials19
B- Methods23
IV- Results and Discussion32
A- Genetic variabilities of Cucumis melo and Citrullus sp.
genotypes for quantitative characters32
B- Analysis of genetic variation37
C- Expression of hetrosis39
D- Natural of genetic divergence among Cucumis melo
and Citrullus sp. genotypes and their F ₁ hyprids47
E- Analysis of combining ability and gene effects for eight
quantitative characters in Cucumis melo64
F- Component of genetic variance and heritability
estimates71
G- Natural of associations among the studied quantitative
characters at the phenotypic and genotypic levels75
H- Isozyme polymorphism among Cucumis melo and
Citrullus sp. genotypes and their F ₁ hybrids79
V- Summary101
VI- Reference 106
VII- Arabic Summary

List of tables

Table No.		Page
Table (1)	: Origin and characteristics of six Cucumis melo	
	genotypes.	20
Table (2)	: Origin and characteristics of seven Citrullus sp.	
	genotypes.	22
Table (3)	: Mean values of eight quantitative characters for fifteen	
	Cucumis melo genotypes.	33
Table (4)	: Mean values of eight quantitative characters for	
	thirteen Citrullus sp. genotypes.	36
Table (5)	: Analysis of variance of eight quantitative characters for	
	fifteen Cucumis melo genotypes.	38
Table (6)	: Analysis of variance of eight quantitative characters for	
	Citrullus sp. genotypes.	38
Table (7)	: Expression of heterosis % for eight quantitative	
	characters over mid-parental value in nine F ₁ hybrids of	
	Cucumis melo.	41
Table (8)	: Expression of heterosis % for eight quantitative	
	characters over better parental value in nine F ₁ hybrids	
	of Cucumis melo.	52
Table (9)	: Expression of heterosis % for eight quantitative	
	characters over mid-parental value in six F ₁ hybrids of	
	Citrullus sp.	45
Table (10)	: Expression of heterosis % for eight quantitative	
	characters over better parental value in six F ₁ hybrids of	
	Citrullus sp.	46

Table No.		Page
Table (11)	: Genetic distances among fifteen parental and hybrids	
	genotypes of Cucumic melo L.	49
Table (12)	: Genetic distances among the thirteen parental and	
	hybrids genotypes of Citrullus sp.	51
Table (13)	: Distribution of parental and hybrid Cucumis melo L.	
	genotypes and their cluster mean values.	53
Table (14)	: Distribution of parental and hybrid Citrullus sp.	
	genotypes and their cluster mean values.	55
Table (15)	: Genetic distances between clusters in <i>Cucumis melo</i> L.	57
Table (16)	: Genetic distances between clusters in <i>Citrullus sp</i> .	57
Table (17)	: Analysis of variance and their combining ability	
	components for eight quantitative characters over eleven	
	Cucumis melo genotypes.	66
Table (18)	: Estimates of general combining ability effects of five	
	parental Cucumis melo genotypes for eight quantitative	
	characters.	68
Table (19)	: Estimates of specific combining ability effects of six \boldsymbol{F}_1	
	Cucumis melo hybrids in eight quantitative characters.	70
Table (20)	: Components of variance and heritability estimates for	
	eight quantitative characters in Cucumis melo.	72
Table (21)	: Percentage of contribution of lines (L), tester (T) and L	
	\times T combination in eight quantitative characters in 3 \times 2	
	line-tester analysis.	74
Table (22)	: Genotypic (G) and phynotypic (P) correlation	
	coefficients among eight characters over fifteen	
	Cucumis mela genotypes	76

	Page	16.42
: Genotypic (G) and phynotypic (P) correlation		J.ET
coefficients among eight characters over thirteen		
Citrullus sp. genotypes.	78	
: Squared genetic distance among fifteen parental and		
hybrids genotypes of Cucumis melo based on three		Strait
isozyme systems (Est), (Mdh) and (Gdh).	82	
: Squared genetic distance among thirteen parental and		
hybrids genotypes of Citrullus sp. based on three		
isozyme systems (Est), (Mdh) and (Gdh).	84	deT
	coefficients among eight characters over thirteen Citrullus sp. genotypes. : Squared genetic distance among fifteen parental and hybrids genotypes of Cucumis melo based on three isozyme systems (Est), (Mdh) and (Gdh). : Squared genetic distance among thirteen parental and hybrids genotypes of Citrullus sp. based on three	: Genotypic (G) and phynotypic (P) correlation coefficients among eight characters over thirteen Citrullus sp. genotypes. : Squared genetic distance among fifteen parental and hybrids genotypes of Cucumis melo based on three isozyme systems (Est), (Mdh) and (Gdh). : Squared genetic distance among thirteen parental and hybrids genotypes of Citrullus sp. based on three

. .: 1 nT

ALERS HER

List of Figures & Photos

Fig No.		Page
Fig (1)	: Dendrogram presentation of fifteen parental and hybrid	
	Cucumis melo L. genotypes in clustering pattern.	59
Fig (2)	: Dendrogram presentation of thirteen parental and	
	hybrids Citrullus sp. genotypes in clustering pattern.	60
Fig (3)	: Means average contribution of the studied characters in	
	each cluster in Cucumis melo.	62
Fig (4)	: Means average contribution of the studied characters in	
	each cluster in Citrullus sp.	63
Fig (5)	: Linkage dendrogram for melon genotypes on the basis	
	of combined esterase, malate dehydrogenase and	
	Glutamate dehydrogenase banding patterns.	86
Photo (1)	: Polyacrylamide gels stained for esterase isozymes in	
	roots (r), stem (s) and leaf (L) tissues of parental and F_1	
	generation of the croses $(P_2 \times P_1)$, $(P_2 \times P_3)$, $(P_2 \times P_4)$,	
	$(P_2 \times P_6)$, $(P_4 \times P_1)$, $(P_4 \times P_2)$, $(P_4 \times P_3)$, $(P_4 \times P_5)$ and $(P_4 \times P_5)$	
	× P ₆) of Cucumis melo.	87
Fig (6)	: Linkage dendrogram for melon genotypes on the basis	
	esterase banding patterns.	88
Photo (2)	: Polyacrylamide gels stained for malate dehydogenase	
	isozymes in roots (r), stem (s) and leaf (L) tissues of	
	parental and F_1 generation of the croses $(P_2 \times P_1)$, $(P_2 \times P_1)$	
	P_3), $(P_2 \times P_4)$, $(P_2 \times P_6)$, $(P_4 \times P_1)$, $(P_4 \times P_2)$, $(P_4 \times P_3)$, $(P_4 \times P_3)$	
	\times P ₅) and (P ₄ \times P ₆) of <i>Cucumis melo</i> .	89