

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

BITAMT

Comparative studies of some artificial satellites observations and fitting the output data using Spline technique.

A Thesis submitted
to
The Astronomy Department
Faculty of science
Cairo University

By

Susan Wassem Samwel Stefan

National Research Institute of Astronomy and Geophysics (NRIAG)

B.Sc. in Astronomy&physics, Cairo University

Under the Supervision of

Prof. Dr. Z.Metwally
Astronomy Department
Faculty of science- Cairo University

Prof. Dr. Joseph Sidky Mikhail Space Research Department National Research Institute of Astronomy and Geophysics

Prof. Dr.Maher Melek
Astronomy Department
Faculty of science- Cairo University

In the Partial Fulfillment for the requirements of M.Sc. Degree

Cairo University
Faculty of Science

2004

APPROVAL SHEET

Title of the Ms.C Thesis

Comparative studies of some artificial satellites observations and fitting the output data using Spline technique

Submitted to:

The Astronomy Department, Faculty of science, Cairo University

Name of Candidate:

Susan Wassem Samwel Stefan

National Research Institute of Astronomy and Geophysics (NRIAG)

Supervision Committee:

1- Prof. Dr. Z. Metwally

Prof. of Astronomy, Cairo University, Faculty of science, Astronomy Dept.

2- Prof. Dr. Joseph Sidky Mikhail Jaseph

Prof. of Astronomy, National Research Institute of Astronomy and Geophysics (NRIAG), Sun and Space Research Dept.

3- Prof. Dr. Maher Melek

Prof. of Astronomy, Cairo University, Faculty of science, Astronomy Dept.

Approved

Prof. Dr. M. Abdel Wahab

Chairman of the Astronomy Department, Faculty of Science, Cairo University

Keywords

Satellite laser Ranging (SLR), Traking, Helwan-SLR Station, Upgrading, Equipment, Calibration, Data Fitting, Spline, analysis procedures, Interpolation, Chebyshev polynomials, Precision, Standard deviation, Range, Range residuals.

Summary

The satellite laser ranging is considered to be one of the most accurate techniques available to track the artificial earth's satellites. The high precision measurements achieved at several SLR stations have resulted in many new and exiting science applications. Therefore, all SLR stations are concerned with improving the accuracy of the distance measurements by upgrading the used hardware and software.

In this thesis, the satellite laser ranging from Helwan-SLR station is studied; the upgrading, which has been made to the station, the analysis procedures used for analyzing the SLR data, and some comparative statistical studies on Helwan-SLR data are presented. In addition to that, one of the tasks in this work is to deal with the problem of fitness of data. Needless to say that the process of smoothing the SLR data is considered to be the first step for any analysis or further scientific study related to the satellite laser ranging. So, a method for analyzing the SLR data is applied using the spline technique in order to obtain what is the so-called best fitting.

Chapter one represents a historical background on the satellite laser ranging followed by the principles and the purposes of the satellite tracking using the laser beam. Also, some information about the satellites, which have been tracked from Helwan-SLR station, are represented. In addition to that, a historical review of Helwan-SLR station is given. The description and the upgrading of the equipment of the Helwan satellite laser ranging station are also given. The software and the hardware related to the system are explained followed by the method used for calibrating the system of the Helwan-SLR station. Moreover, this chapter gives a mathematical interpretation of the data

fitting followed by short notes about the spline technique from the points of view of its definition and its different kinds.

In chapter two, the satellite position prediction software, which is carried out to compute the location (or position) of the satellite and its corresponding range for each one-minute interval, is explained. The satellite laser ranging data and their analysis procedures from the Helwan-SLR station are also explained and the results of the data analysis are discussed. In addition to that, it is known that the SLR data are characterized by the huge number of data points. Therefore, one of the tasks of this chapter is to discuss the contraction of this large number of data points using the so-called normal points.

Chapter three deals with fitting satellite laser ranging data using the spline technique and its advantages for fitting a large number of data points, using the Chebyshev polynomial. The approximation with the Chebyshev polynomials is discussed. The principles of fitting data using the spline technique are explained. A constructed program for fitting data is represented. As an application, the spline technique is used for fitting each of the satellite laser ranging data and the on-line range residuals obtained from the observations of the satellites Ajisai, Topex, and Beacon-C. Finally, this chapter is ended by a comparison between the results obtained using the technique mentioned in chapter two (which is used in Helwan-SLR station) and their corresponding values obtained by applying the spline technique on the range residuals.

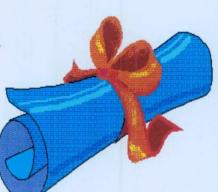
Comparative statistical studies on satellite laser ranging data are given in chapter four. The results of the analysis of the data taken before and after the upgrading, which have been made to the Helwan-SLR station during the year 1999, are shown. The results are compared with values of other

investigators from different analysis centers. Moreover, the number of passes and the number of normal points as computed for the satellites observed from Helwan-SLR station during the period from 1991 to 2001 are given. Finally, a comparative study of the results of the data obtained from the Helwan-SLR station with those obtained from other SLR network stations have been made.

Dedication

I would like to dedicate this thesis with deepest love

to


My Father

My Mother

My Sister Magdolin

and

My Brother Isaac

Acknowledgment

I'm deeply indebted to Prof. Dr. Joseif Sedky Mikhail, National Research Institute of Astronomy and Geophysics (NRIAG), Space Research Lab., for his stimulating discussions, his critically and helpful reviewing and his continuous supporting throughout the course of this work.

I wish to express my deepest gratitude to Prof. Dr. Z. Metwally, Astronomy Dept., Faculty of Science, Cairo University, for his kind and sincere supervision and for encouraging me during the progress of the whole work.

I would like to express my deepest gratitude to Prof. Dr. Maher Melek, Astronomy Dept., Faculty of Science, Cairo University, for his truthful support, revision of this work, constructive criticism, and for his instructive scientific discussions.

I would like to express my sincere gratitude and deepest thanks to Dr. Yousry Shafik Hanna and Dr. Makram Ibrahim Khalil, National Research Institute of Astronomy and Geophysics (NRIAG), Space Research Lab., for their unlimited help, continuous guidance, valuable suggestions, fruitful discussions, and continuous support throughout this research.

I wish to thank the Astronomy Dept. at the Cairo University, and I'm greatly indebted to the Space Research Lab. and all the Staff in NRIAG for their help and doing their best and for providing me excellent facilities, which made the completion of this work possible.

I would like to express my heart felt gratitude, with deepest love and appreciation to my family and all the unnamed persons who inspired me all through the work.

Contents

List of Figures	Page
List of Tables	an arrest of the bost of
List of Acronyms	
List of Appendences	VIII
Chapter I Introduction	,
1.1 Introduction	-
1.2 Historical background on SLR	-
1.3 The Principles of laser ranging ——————————————————————————————————	70
1.4 Purposes of satellites tracking	
1.5 Helwan satellite laser ranging station————————————————————————————————————	
1.5.1 The upgrading of Helwan- SLR station	
1.5.2 Description of the present equipment of Helwan SLR station-	
1.5.2.1 The mount with its emitter and receiver————	
1.5.2.2 The Laser transmitter	
1.5.2.3 The laser ranging electronics and meteorological	10
instruments	10
1.5.2.4 The Global positioning system	
1.5.2.5 The time base of Helwan-SLR station	
1.5.3 The system calibration of Helwan-SLR station-	
1.6 Previous work of using Helwan-SLR data	
1.7 Techniques of data fitting	
1.7.1 Mathematical Interpretation	
1.7.2 Spline technique	
1.7.2.1 Spline function of degree 1	
1.7.2.2 Quadratic spline	
1.7.2.3 Spline that smooth the data	
1.7.2.4 Cubic spline	
1.7.2.5 The Kth order B-Spline	33

	Page
1.7.2.6 A spline function of order	33
1.7.2.7 Truncated power function and natural splines	33
1.7.2.8 The smoothing spline of Schoenberg and Reinsch-	34
1.8 tests of best approximation	35
1.9 Aim of the work	35
Chapter II Analysis of satellite laser ranging data	36
2.1 Introduction	36
2.2 The satellite position theoretical prediction	37
2.2.1 The software used for satellite position prediction	40
2.3 The analysis procedures of the Helwan satellite laser ranging data-	
2.3.1 The satellite laser ranging data——————————	48
2.3.2 The analysis procedures used at Helwan SLR data	
2.4 Results and discussion	53
2.5 Normal points design	68
2.5.1 Normal points Algorithm	
Chapter III Fitting data using spline technique	73
3.1 Introduction	73
3.1.1 The interpolation theorem———————————————————————————————————	74
3.1.2 The Wierestrass approximation theorem	74
3.2 Approximations with Chebyshev polynomials—————	75
3.3 Fitting data using spline technique————————————————————————————————————	77
3.3.1 Fitting data along separate intervals—	78
3.3.2 Combined adjustment for constructing of a proper spline	79
3.4 The program used for fitting the SLR data	81
3.5 Application for using the spline technique	82
3.5.1 The first case (the satellite's range)	82
3.5.1.a The satellite Aijsai	92