

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

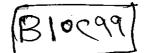
تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO



بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

MINOUFIYA UNIVERSITY FACULTY OF ENGINEERING SHEBIN EL-KOM, EGYPT

STUDY OF FLOW CHARACTERISTICS THROUGH ANNULAR DIFFUSERS

A Thesis

Submitted to Mechanical Power Engineering Department for the Award of M. Sc. Degree in Mechanical Power Engineering

> By Eng. Mohamed Kandeel Abd El-Hady

> > Supervised by

Prof. Hassan A. Abdalla

Mechanical Power Eng. Dept., Faculty of Engineering, Minoufiya University.

Prof. Atef M. Alam El-Din

Mechanical Power Eng. Dept., Faculty of Engineering, Suez Canal University.

alam eldin

Dr. Mofreh H. Hamed

M. Hamed

Associate Prof., Mechanical Power Eng. Dept.,

Faculty of Engineering,

Minoufiya University.

2002

MINOUFIYA UNIVERSITY FACULTY OF ENGINEERING SHEBIN EL-KOM, EGYPT

STUDY OF FLOW CHARACTERISTICS THROUGH ANNULAR DIFFUSERS

A Thesis

Submitted to Mechanical Power Engineering Department for the Award of M. Sc. Degree in Mechanical Power Engineering

By Eng. Mohamed Kandeel Abd El-Hady

Committee of Examiners

Prof. Fawzy M. A. El-Otla

Prof. Nabil H. Mahmoud

Chairman of Mechanical Power Eng. Dept., Faculty of Engineering, Suez Canal University.

F. Elotla

Mechanical Power Eng. Dept., Faculty of Engineering, Minoufiya University.

Prof. Hassan A. Abdalla

Mechanical Power Eng. Dept.,
Faculty of Engineering,
Minoufiya University.

Dr. Mofreh H. Hamed

Associate Prof.,
Mechanical Power Eng. Dept.,
Faculty of Engineering,
Minoufiya University.

Date of Examination 23.12.2002

ACKNOWLEDGMENT

At first and forever I thank ALLAH who helped me to finish this work.

Many thanks and gratitude to my supervisors Prof. Dr. Eng. Hassan Awad Abdalla, Prof. Dr. Eng. Atef Mohamed Alam El-Din and Associate Prof. Dr. Eng. Mofreh H. Hamed, for the scientific aid in this thesis, valuable guidance, constructive advice and the encouragement during the work.

Also many thanks to academic staff of Mechanical Power Engineering Department, Faculty of Engineering, Minoufiya University, for assistance to fulfill this work.

ABSTRACT

This thesis deals with the experimental investigation of air flow through annular diffusers. This investigation is mainly concerned with the aerodynamic characteristics of the annular diffuser. Other aim of this investigation is to study the internal performance of the annular diffuser in terms of the boundary layer growth. Therefore, velocity profiles and radial static pressure distributions are measured in the presence of struts with different cross-sections.

All the tested diffusers used in the present study have the same hub and casing radii at the inlet. Three straight walled annular diffusers were made with a constant half cone angle for the outer wall of 10 degrees, and half cone angle of 0, 5, and 10 degrees for the hub. All the measurements in the present experimental program were made in the incompressible flow regime at an average Reynolds number ranging from 1.3*10⁵ to 2.71*10⁵.

The experimental program consists of two parts. The first part considers naturally developed inlet conditions, and the second part examines the influence of inlet turbulence intensity, using wall spoiler at the inlet of the annular diffuser.

The objective of the present work is to obtain the effects of strut geometry and hub half cone angle on the performance of annular diffuser. The influence of increasing the level of inlet turbulence caused by flow spoilers of different thicknesses was also studied.

The variation of the performance and flow characteristics within the annular diffusers would be expected to result from corresponding changes in any or all of the inlet flow parameters, in addition to geometric parameters. The principal parameters are:

- a- The inlet flow blockage.
- b- The inlet turbulence intensity.
- c- The inlet velocity distortion.
- d- The diffuser cant angle.

Accordingly, the results indicate the best hub cant angle which yields a maxima of overall pressure recovery coefficient. It is also seen that, the boundary layer blockage along the diffuser decreases with increasing the hub cant angle. The results of the effects of increased inlet turbulence intensity using spoilers with different thicknesses show that, a marked gain in the overall pressure recovery coefficient and an improvement in the velocity profiles at exit are noticed. It is also seen that, the presence of wall spoiler near the diffuser entrance increases the rate of growth of the boundary layer parameters. The effects of strut geometries on the performance of tested annular diffusers are not deeply examined. However, some obtained results in this work show that, the overall performance of the annular diffusers is strongly dependent on the strut geometry.

CONTENTS

ACI	KNOWI	LEDGEMENT	1			
ABSTRACT						
COI	CONTENTS NOMENCLATURE LIST OF FIGURES					
NOI						
LIS						
LIS'	T OF T	TABLES	x			
CH	APTER	1: INTRODUCTION AND LITERATURE REVIEW				
1.1	Introdu	iction	1			
1.2	Classif	ication of Annular Diffusers	3			
1.3	Perform	mance Parameters of Annular Diffusers	5			
1.4	Diffuse	er Flow Regimes	6			
1.5	Literati	ure Review	10			
1.6	Scope	of Present Investigation	22			
CH	APTER	2: EXPERIMENTAL SET-UP AND MEASURING				
		TECHNIQUES				
2.1	Introdu	action	24			
2.2	Descri	ption of Aerodynamic Circuit	24			
2.3	Components of Experimental Set-Up					
	2.3.1	Geometry of the tested-annular diffusers	25			
	2.3.2	Upstream annular pipe	27			
	2.3.3	Air supply	27			
	2.3.4	Downstream annular pipe	2.7			
	2.3.5	Geometries of struts	28			
	2.3.6	Wall spoilers	28			

2.4	Measurement Instrumentations			
2.5	Diffuser Inlet Conditions			
	2.5.1	Naturally developed inlet conditions	33	
	2.5.2	Artificial inlet conditions	33	
2.6	Test In	Test Inlet Conditions		
2.7	Experimental Program			
2.8	Experimental Procedure			
2.9	Error Analysis			
CH	APTER	3: RESULTS AND DISCUSSIONS		
3.1	Introdu	action	37	
3.2	Characteristics of Velocity Profiles in Tested Annular Diffusers		37	
3.3	Charac	teristics of Radial Static Pressure Profiles in Tested Annular	39	
	Diffuse	ers		
3.4	Develo	opment of Boundary Layer in Tested Annular Diffusers	44	
3.5	Effect of the Hub Cant Angle			
3.6	Tests with Increased Inlet Turbulence-Flow Spoiler			
3.7	Overall Performance of Annular Diffusers			
	3.7.1	Effect of hub cant angle	68	
	3.7.2	Effect of spoiler thickness and inlet blockage	68	
3.8	Compa	arison with the previous work.	72	
СН	APTER	4: CONCLUSIONS AND RECOMMENDATIONS		
4.1	Conclu	isions	75	
4.2	Recom	nmendations for Future Works	76	
RE]	FEREN	CES	77	

NOMENCLATURE

English Symbols:

- A Area, (m^2)
- b Width of the spoiler, (m)
- D Hydraulic diameter, (m)
- L Annular diffuser axial length, (m)
- Le Length of approach pipe upstream of annular diffuser, (m)
- L_s Distance of spoiler from diffuser inlet, (m)
- P Static pressure, (Pa)
- P₀ Total pressure, (Pa)
- R Diffuser radius, (m)
- t Spoiler thickness, (m)
- u local axial velocity, (m/s)
- U_i Mean velocity in the inlet cross section, = U / 1.2, (m/s)
- U Maximum velocity in the cross section, (m/s)
- x Axial distance measured from diffuser inlet, (m)
- y Radial distance normal to wall, (m)

Greek Symbols:

- α Annular diffuser divergence angle, = $(Φ_c Φ_h)$, (degrees)
- δ Boundary layer thickness, (m)
- δ^* Boundary layer displacement thickness, = $\int_0^{\delta} (1 u/U) dy$, (m)
- Boundary layer momentum thickness, = $\int_{0}^{s} (1-u/U)(u/U)dy$, (m)
- ø Swirl flow angle, (degrees)
- γ Stagger angle, (degrees)
- Φ_c Half cone angle of the casing, (degrees)
- Φ_h Half cone angle of the hub, (degrees)
- μ Dynamic viscosity, (N-s/m²)
- ρ_a Air density, (Kg/m³)
- $\rho U_i^2/2$ Mean dynamic head at diffuser inlet, (N/m^2)
- ΔP Pressure difference at any distance along the diffuser, = (P_x-P_i) , (Pa)
- ΔP_0 pressure difference across the diffuser, = (P_2-P_i) , (Pa)

- ΔP_s Radial static pressure difference, (Pa)
- ΔR Annulus height, = (R_c-R_h) , (m)

Dimensionless Parameters:

- A_r Area ratio, = (A_2 / A_1)
- B Boundary layer blockage, = $(\delta^*_c + \delta^*_h) / \Delta R_1$
- C_P Pressure recovery coefficient, = $\Delta p / 0.5 \rho U_i^2$
- C_{Pi} Ideal pressure recovery coefficient, = $1-1/(A_r)^2$
- C_{Pm} Mean pressure recovery coefficient, = $(C_{Pc} + C_{Ph})/2$
- C_{Po} Overall pressure recovery coefficient, = $\Delta p_o / 0.5 \rho U_i^2$
- C_{Ps} Radial static pressure recovery coefficient, $\Delta P_s / 0.5 \rho U_i^2$
- H Boundary layer shape factor, = δ^*/θ
- Kd Total pressure loss coefficient, = $\Delta P_o / 0.5 \rho U_i^2$
- M Mach number
- R_e Reynolds number based on hydraulic diameter, = $\rho U_i D_h / \mu$
- T Dimensionless Spoiler thickness, = $t / \Delta R_1$
- X Non-dimensional axial distance measured from diffuser inlet, = $x/\Delta R_1$
- Y Non-dimensional radial distance, = $y / \Delta R$
- δ^* Dimensionless Boundary layer displacement thickness, = $\delta^* / \Delta R_1$
- η Overall efficiency, = C_p / C_{pi}

Subscripts:

- 1 Annular diffuser entrance
- 2 Annular diffuser exit
- c Casing
- d Diffuser
- e Approach pipe upstream of annular diffuser
- h Hub
- i Inlet conditions
- m Mean value
- s Spoiler
- x At any distance along the annular diffuser

LIST OF FIGURES

Figure Number	Figure Contents	Page
1.1	Schematic diagram of the annular diffuser geometry	4
1.2	Types of the annular diffusers (half shape)	4
1.3	Diffuser flow regimes chart due to Kline [2]	7
1.4	Different flow regimes in the diffusers due to Kline [2]	8
1.5	First appreciable stall lines and optimum lines for annular diffusers	9
1.6	Variation of the boundary layer shape factor for fully developed inlet flow and for flow with wall spoiler upstream of annular diffuser with L / ΔR_1 =5.0 and AR = 2, R_c = 2*10 ⁵	13
1.7	Geometries of test struts	18
2.1	General arrangement of experimental facility	26
2.2	Dimension geometric parameters of tested annular diffuser	30
2.3	Geometries of test struts cross-section	30
2.4	Location of wall spoiler	30
2.5	Locations of pressure taps and velocity measurements	31
2.6	Pitot static tube	32
2.7	Construction of mechanism of the pitot static tube	32
3.1	Variation of dimensionless radial velocity distribution at different stations along the diffuser axis for strut-1, at $R_e = 1.74 \times 10^5$	40
3.2	Variation of dimensionless radial velocity distribution at different stations along the diffuser axis for strut-2, at $R_e = 1.74 \times 10^5$	41
3.3	Variation of dimensionless radial static pressure distribution at different stations along the diffuser axis for strut-1, at $Re = 1.74*10^5$	42
3.4	Variation of dimensionless radial static pressure distribution at different stations along the diffuser axis for strut-2, at $Re = 1.74*10^5$	43
3.5	Variation of boundary layer displacement thickness at different stations along the diffuser axis for the annular diffuser casing and hub for strut-1, at Re = $1.74 * 10^5$	45