

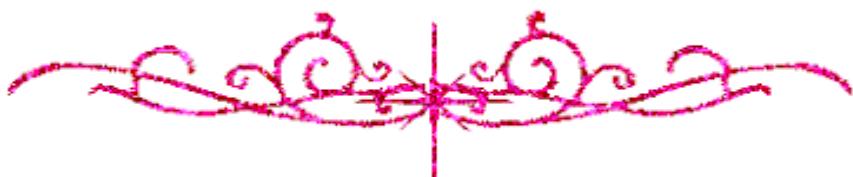
بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

SALWA AKL

شبكة المعلومات الجامعية
@ ASUNET

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم



SALWA AKL

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها
على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيداً عن الغبار

SALWA AKL

بعض الوثائق

الأصلية تالفة

SALWA AKL

بالرسالة صفحات

سالوة أكل

SALWA AKL

A GENERALIZED NUMERICAL METHOD FOR SOLVING
MULTI- INTEGRAL PROBLEMS . NUMERICAL
METHODS TO SOLVE INTEGRO-DIFFERENTIAL
EQUATIONS

B 1696

A THESIS
SUBMITTED FOR THE DEGREE OF MASTER OF
SCIENCE
IN
PURE MATHEMATICS

PRESENTED
BY
SAYED AHMED SAYED

MATHEMATICS DEPARTMENT
FACULTY OF SCIENCE
MENOFIA UNIVERSITY

SUPERVISORS

PROF.DR.N.A.EL-RAMLY PROF.DR.M.M.EL-KAFRAWY
FACULTY OF SCIENCE, INSTITUTE OF NATIONAL PLANNING,
MENOFIA UNIVERSITY CAIRO

El Ramly

El Kafrawy

DRA.H.AMER

FACULTY OF SCIENCE,
MENOFIA UNIVERSITY

D.H.Amer

1996

CONTENTS

Acknowledgment

Preface

CHAPTER 1

A Numerical Method for solving Multi-Integral problems

1-1 Double Integrals ...2

1-1 Triple Integrals ...26

1-1 Multiple Integrals ...24

CHAPTER 2

About Integro-Differential Equations

2-1 Solution Of Integro-Differential Equations...29

CHAPTER 3

Methods Of Solution Of The Integral Equation

3-0 Introduction ... 34

3-1 Successive Approximations ...35

3-2 Algebraic Methods ...45

3-3 Collocation and Least squares Methods ...58

CHAPTER 4

Further Methods Of Solution Of The Integral Equation

4-1 Symmetric Operators ...72

4-2 Miscellaneous Methods ...82

Appendix ... 89

References ...97

Arabic Summary...99

ACKNOLEDGMENT

I would like to express my deep appreciation to Prof.Dr.M.El-kafrawy,Institute of National Planning,Cairo,for suggesting the problem and for his constructive guidance and warm encouragement throughout his supervision of this work.

I wish to express my great thanks to Prof.Dr.N.EL-ramly,Faculty of Science,Monofia University, for her help to complete this thesis in its form.

I also would like to express my great thanks to Dr.A.Amer,Faculty of Science,Monofia University, for his constructive help.

It is a pleasure to acknowledge the interest of the head of department, and all members of staff of the Math.Dep.,Faculty of Science,Monofia University.

Finally,my sincere thanks are dedicated to all members of staff of Computer Dep. in Faculty of Science,Monofia University, for their help.

S.A.SAYED

ACKNOLEDGMENT

I would like to express my deep appreciation to Prof.Dr.M.El-kafrawy,Institute of National Planning,Cairo,for suggesting the problem and for his constructive guidance and warm encouragement throughout his supervision of this work.

I wish to express my great thanks to Prof.Dr.N.EL-ramly,Faculty of Science,Monofia University, for her help to complete this thesis in its form.

I also would like to express my great thanks to Dr.A.Amer,Faculty of Science,Monofia University, for his constructive help.

It is a pleasure to acknowledge the interest of the head of department, and all members of staff of the Math.Dep.,Faculty of Science,Monofia University.

Finally,my sincere thanks are dedicated to all members of staff of Computer Dep. in Faculty of Science,Monofia University, for their help.

S.A.SAYED

preface

This thesis treats several points . Firstly , the so-called Multi-Integrals . Beginning from Double integrals passing through Triple integrals until we have arrived to Multiple integrals from Numerical Analysis viewpoint . For this purpose we have formulated a certain procedure and a well defined method based on an algorithm followed by certain soft ware computer programs , for different forms of integrals and according to the problem's nature (i.e the integration domain and also according to the integrand which we will integrate it) .The following results are obtained for determining the best dividing of the integration interval to be used in the following parts .

- (1) The dividing method of the integration area gives us good or bad results for certain type to get results congruent to what we have obtained by exact methods .
- (2) In most cases we obtain quick and accurate results.
- (3) We have different results according to the different integration classes that is to see there is no general method to solve all types of integrations .
- (4) The numerical approach for evaluating integrals is a principle and alternative way to the exact approach .

Secondly , we have used Laplace Transformations to solve certain type of Integro-differential equation problems .

Finally , we try to put our hands on a method to solve certain types of integral equation problems . From basic viewpoint through the three following methods Successive Approximations , Algebraic Methods and Collocation and Least Squares Methods . And from applied and technical viewpoint to another types, we have discussed Symmetric operators treatments and also we deal with some Miscellaneous methods which are appropriate to such different types . In different stages , sometimes we have used the extension concept to show how each method is an extension to the previous one. And by applying the Integro-differential equation on the case study which is , population pyramid prediction , we found that it needs a lot of time and effort over that have been taken on this thesis . Henceforth we will redo this application widely at the Ph.D. research .

CHAPTER 1
A NUMERICAL METHOD FOR SOLVING MULTI-INTEGRAL
PROBLEMS

1-1 Double integrals

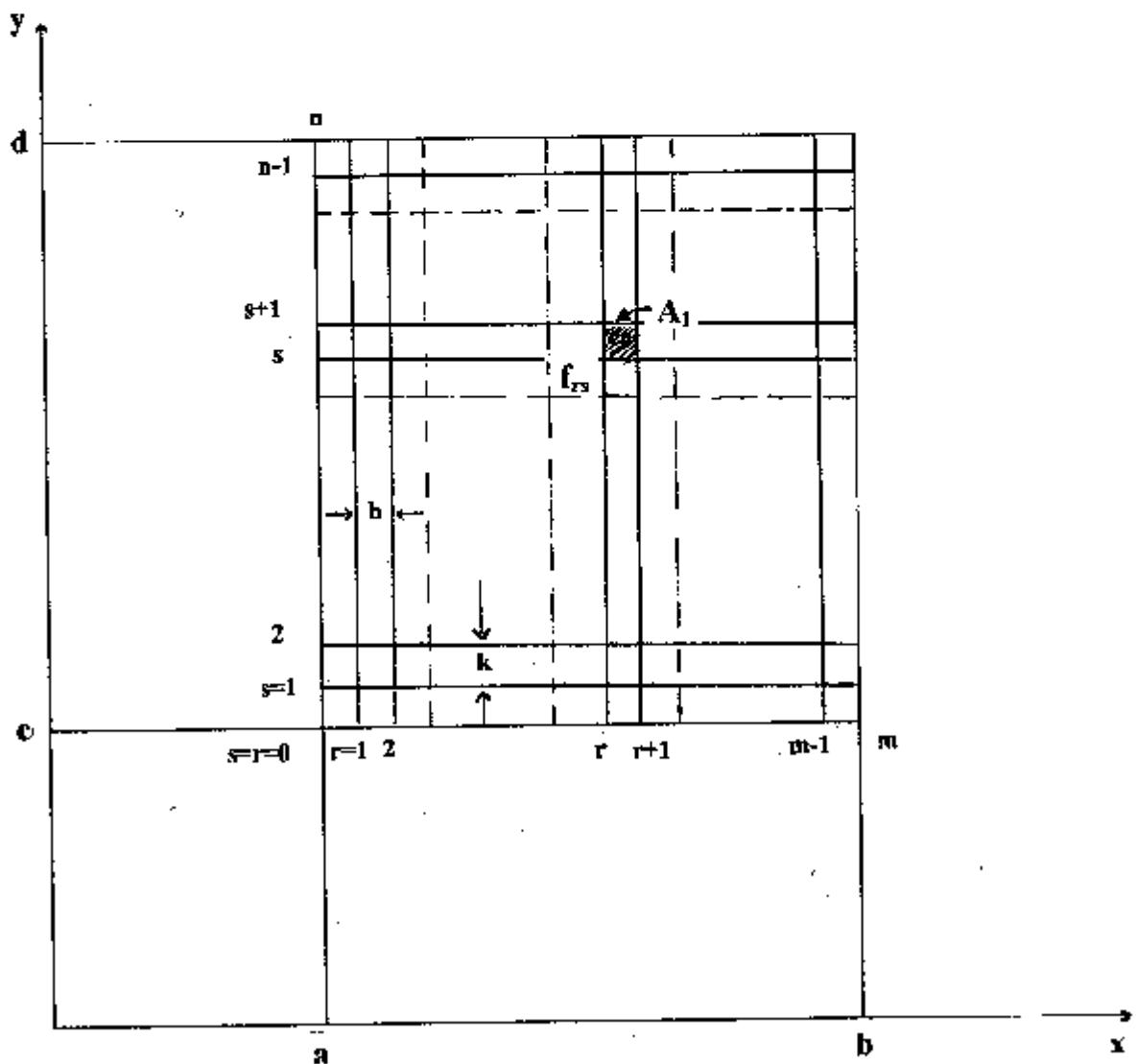
1-1-1 Rectangular regions of integration

The double integral $v = \int_a^b \int_c^d f(x,y) dx dy$,

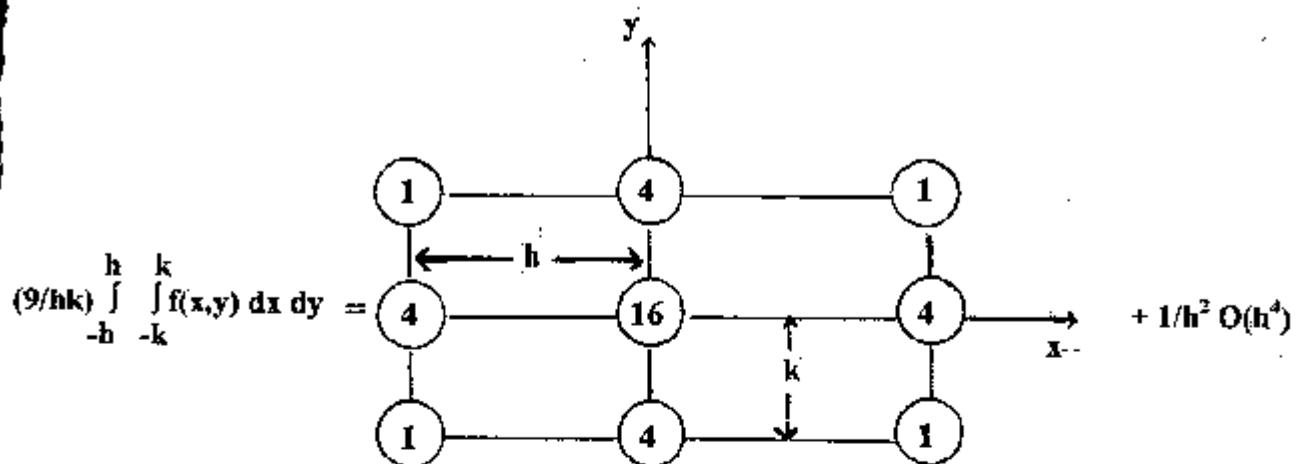
extended to a rectangle $x=a, x=b, y=c, y=d$, can be evaluated numerically by two successive integrations in the x and y directions, using the Simpson's rule.

For this purpose, divide the rectangle $(a,b), (c,d)$ into a number m, n of rectangles of sides $b-a/m, k=(d-c)/n$, and consider the values f_{rs} at the pivotal points

$$x_r = a + rh \quad (r=0,1,2,\dots,m) \quad ; \quad y_s = c + sk \quad (s=0,1,2,\dots,n)$$



the value B_4 of the double integral extended to four adjacent rectangles of sides h, k meeting at (x_r, y_s) becomes by the Simpson's rule .



$$B_4 = \int_{y_{s-1}}^{y_{s+1}} \int_{x_{r-1}}^{x_{r+1}} f(x, y) dx dy$$

$$= \int_{y_{s-1}}^{y_{s+1}} (h/3) [f_{r-1}(y) + 4 f_r(y) + f_{r+1}(y)] dy$$

$$\begin{aligned}
 &= (h/3) \left[\int_{y_{s-1}}^{y_{s+1}} f_{r-1}(y) dy + 4 \int_{y_{s-1}}^{y_{s+1}} f_r(y) dy + \int_{y_{s-1}}^{y_{s+1}} f_{r+1}(y) dy \right] \\
 &= (h/3) \{ (k/3) [f_{r-1,s-1} + 4 f_{r-1,s} + f_{r-1,s+1}] + (4k/3) [f_{r,s-1} + 4 f_{r,s} + f_{r,s+1}] + (k/3) \\
 &\quad [f_{r+1,s-1} + 4 f_{r+1,s} + f_{r+1,s+1}] \} \\
 &= (hk/9) [f_{r-1,s-1} + f_{r-1,s+1} + f_{r+1,s-1} + 7 f_{r+1,s+1}] + 4 [f_{r-1,s} + f_{r,s} + f_{r,s+1} + \\
 &\quad f_{r+1,s}] + 16 f_{rs} \tag{1-1}
 \end{aligned}$$

Adding the values B_4 corresponding to each rectangle of the domain we obtain the operator or "molecule" of Figure .



It is easy to prove that the error in Simpson's rule for double integration is of order h^4 and that therefore h^4 - extrapolations may be used in connection with the two -dimensional Simpson's rule .

Example (1.1.1)

Simpson's rule will be now applied to evaluate the integral

$$V = \int_{1}^{2} \int_{1}^{2} \frac{1}{x+y} dy dx \quad \text{for } n=2$$

solution

a) Manual , by using equation (1-1)

①	④	①
0.333333	0.285714	0.25
④	⑩	④
0.4	0.333333	0.285714
①	④	①
0.5	0.4	0.333333

$$V_{s,2} = [(0.5)(0.5)]/9 \{0.5 + 0.333333 + 0.25 + 0.333333 + 4(0.4 + 0.4 + 0.285714 + 0.285714) + 16(0.333333)\} \\ = 0.3391881 , \text{ with an error of -0.0024 percent .}$$

b) Applying the computer program (1.1.1) (Appendix)

$$\int_{1}^{2} \int_{1}^{2} \frac{dy dx}{x+y} = 0.339798073 \quad \text{exact}$$

two dimensional integration using simpson's rule

no.of divisions of interval required ? 7

enter ratio of intervals in x/intrevals in y ? 1

enter upper limit for y ? 2