

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ENGINEERING FACTORS OF IRRIGATION SYSTEMS IN GREENHOUSES TO MAXIMIZING PRODUCTION OF SOME VEGETABLE CROPS

By

ESRAA MOHAMED IBRAHEM MOHAMED

B.Sc. Agric. Eng., Fac. of Agric., Ain Shams Univ. 2016

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(On-Farm Irrigation Engineering and Drainage)

Department of Agricultural Engineering Faculty of Agriculture Ain Shams University

Approval sheet

ENGINEERING FACTORS OF IRRIGATION SYSTEMS IN GREENHOUSES TO MAXIMIZING PRODUCTION OF SOME VEGETABLE CROPS

By

ESRAA MOHAMED IBRAHEM MOHAMED

B.Sc. Agric. Eng., Fac. of Agric., Ain Shams Univ. 2016

This thesis for master's degree has been approved by:

Date of Examination: 13/12/2021

8	
Dr. Mohamed Abd El-Wahab Kassem	•••••
Prof. of Agriculture Engineering, Faculty	y of Agriculture, Cairo
University.	
Dr. Yasser Ezzat Arafa	
Prof. of Agriculture Engineering, Faculty	y of Agriculture, Ain Shams
University	
Dr. Khaled Taher El-Bagoury	•••••
Prof. of Agriculture Engineering, Facult	y of Agriculture, Ain Shams
University	
Dr. Abdel-Ghany Mohamed El-Gindy	•••••
Prof. Emeritus of Agriculture Engineerin	ng, Faculty of Agriculture, Ain
Shams University and Dean of Faculty	of Desert Agricultural, King
Salman International University	

ENGINEERING FACTORS OF IRRIGATION SYSTEMS IN GREENHOUSES TO MAXIMIZING PRODUCTION OF SOME VEGETABLE CROPS

By

ESRAA MOHAMED IBRAHEM MOHAMED

B.Sc. Agric. Eng., Fac. of Agric., Ain Shams Univ. 2016

Under the supervision of:

Dr. Abdel-Ghany Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Dept. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University and Dean of Faculty of Desert Agriculture, King Salman International University (Principal Supervisor).

Dr. Khaled Taher El-Bagory

Prof. of Agricultural Engineering, Dept. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Essam El-Din Abdel-Monem Wassef

Head Research Emeritus of Drainage and Irrigation Engineering, Dept. of Drainage and Irrigation Engineering, Agricultural Engineering Research Institute, Agriculture Research Centre.

ABSTRACT

Esraa Mohamed Ibrahim Mohamed: Study of Engineering Factors of Irrigation System in Greenhouses to Maximizing Production of Some Vegetable Crops. Unpublished M. Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2022.

The study aimed to maximize crop production of cucumber and zucchini under greenhouse conditions, reducing irrigation water requirements by using different drip irrigation systems and optimizing water unit productivity. A field experiment was carried out at the experimental greenhouses, Agriculture Research Centre, located at Doki, Giza Egypt. The greenhouse experiment was made of wooden frames and covered with transparent plastic roof polyethylene (PE) 120µm thickness plastic film protected with meshes of 20 x 10 threads/cm² and wight net without warming and no air ventilation was given. The greenhouse was named low innovation greenhouse. The dimensions of each experimental treatment were 3.2 m high, 16 m wide, and 40 m. The first parameter was irrigation systems surface irrigation (SDI) and sub-surface irrigation (SSDI). The second parameter that was examined was water regimes (100% of ET_C, 80% of ET_C, and 50% of ET_C), the third was the emitter's flow rate (2 l/h and 4 l/h), on different crop yields (cucumber and zucchini). The greenhouse field was divided into three plots every plot is considered an irrigation regime, and every plot has two different irrigation lines as a surface and sub-surface built-in line. The results indicated that the highest cucumber production happened under T₂ (80% ET_C) using 2 l/h dripper flow rate in two periods which was (575, 560) Kg/m² for subsurface (SSDI) irrigation at the first and second cultivation season respectively, although the production under full ET_C was (475, 560) Kg/m² for the first and second season respectively so the highest water use efficiency happened under 80% irrigation regime which was 52 Kg/m³ as an average under cucumber crop. The highest zucchini production was (300, 320 Kg/m²) for the first and second season respectively under 80% ETC irrigation regime, subsurface drip irrigation with 2 l/h flow rate dripper and also has the highest water use efficiency (WUE) value which was 43 Kg/m 3 . Under conditions of shortage of water in Egypt, we can use sub-surface drip irrigation (SSDI) together with 2 l/h dripper discharge under 80% ET_C irrigation level to maximize vegetable crops production, optimizing water use efficiency under greenhouse conditions.

Keywords: Surface drip irrigation; Sub-surface drip irrigation; Greenhouse Water use efficiency; Cucumber and Zucchini

ACKNOWLEDGMENT

This work couldn't have ever appeared without the commitment of many individuals to whom I have the joy of offering my appreciation and thanks.

I would like to express my special thanks to my thesis advisors **Prof. Dr. Abdel-Ghany M. EL-Gindy, Prof. Dr. Khaled F. El-Bagoury, and Prof. Dr. Essam El-Deen A. Wassif,** who acknowledged the demand to direct me through the advancement of this postulation and Who made it workable for me to finish the proposal. Their collaboration direction during that time has carried me to the place of effectively culminating this theory work.

Special thanks to all staff members of the Agricultural Engineering Department for their valuable help during experimenting with this work.

Special thanks to all the members in the site of the greenhouses at Agricultural Research Centre, Dokki, Giza, for their cooperation and continuous help to fulfill this work.

To wrap things up, I might want to communicate my heartiest thanks and gratitude to my mother and father for their care and love, for remembering me in all their prayers, and for believing in me. My last words for my appreciation and regard are saved to my dearest spouse, Ali, who always support me to complete my study.

CONTENTS

	Title	Page
	LIST OF TABLES	III
	LIST OF FIGURES	IV
	LIST OF SYMBOLS	V
1	INTRODUCTION	VI
2	REVIEW OF LITERATURE	1
2.1	Water scarcity in Egypt	2
2.2	Drip irrigation systems	2
2.3	Engineering factors	2
2.4	Greenhouses	10
2.5	Vegetable Crops	12
2.6	Yield production	13
3	MATERIALS AND METHODS	17
3.1	Materials	19
3.1.1	Location and experimental data	19
3.1.2	Climatic data	19
3.1.3	The greenhouse experiment	20
3.1.4	Drip irrigation system design	22
3.1.5	Experimental design	22
3.1.6	Vegetable crops	24
3.2	Methods	27
3.2.1	Distribution uniformity	30
3.2.2	Evapotranspiration	30
3.2.3	Irrigation requirements	31
3.2.4	Irrigation time	31

3.2.5	Water productivity (WP)	32
3.2.6	Soil and plant measurements	33
3.2.7	Yield production	33
4	RESULTS AND DISCUSSION	34
4.1	Drip Irrigation Evaluation Parameter	35
4.2	Irrigation Requirements	35
4.3	Growth Indicators	36
4.4	Soil moisture content	41
4.5	Yield production	46
4.6	Water use efficiency (WUE)	49
5	SUMMARY AND CONCLUSION	53
6	REFERENCES	55
7	APPENDICES	58
8	ARABIC SUMMERY	65
		80

LIST OFF TABLES

No.	Title	Page
1	Single (time-averaged) crop coefficients, Kc (FAO.24)	6
2	length of crop development stages for various planting	7
	periods and climate regions (days).	
3	Ranges of maximum effective rooting depth (Zr), and	11
	soil water depletion fraction for no stress (p), for	
	common crops FAO.56	
4	Harvests under nursery in Egypt, life period for each	14
	yield, normal water system necessities	
5	Actual properties of homogeneous soil of the trial	19
	investigated before development	
6	Chemical analysis of irrigation water used in the	20
	experiment	
7	Monthly values climatic variables and reference	21
	evapotranspiration for cultivation seasons.	
8	The tests comprised of three irrigation regimes	27
9	The following fertilizer quantities are added for every	29
	1000 plants	
10	Methods of comparison of statistical (ASAE,1999)	31
11	Information for assessing appropriation consistency for	35
	dribble water system framework GR 2l/h under nursery	
	toward the start and the finish of the period	
12	Information for assessing appropriation consistency for	37
	dribble water system framework GR 4l/h under nursery	
	toward the start and the finish of the period	
13	Actual water applied to irrigate cucumber crop (2018)	38
14	Actual water applied to irrigate cucumber crop 2019	39
15	Actual water applied to irrigate zucchini greenhouse	40
	(2018)	
16	Actual water applied to irrigate zucchini crop 2019	

LIST OF FIGUERS

No	Title	Page
1	Greenhouse dimensions	21
2	Layout of drip irrigation system design and treatments	24
3	Digital soil moisture meter	32
4	Effect of irrigation levels on cucumber plant heights 2018	40
5	Effect of irrigation levels on cucumber plant heights 2019	40
6	Effect of irrigation levels on zucchini plant heights 2018	41
7	Effect of irrigation levels on zucchini plant heights 2019	41
8	Effect of irrigation levels on cucumber leaves numbers 2018	43
9	Effect of irrigation levels cucumber leaves numbers 2019	43
10	Effect of irrigation levels on zucchini leaves numbers 2018	44
11	Effect of irrigation levels on zucchini leaves numbers 2019	44
12	Average soil moisture content values as percentage in weight D1	46
13	Average soil moisture content values as percentage in weight D2	46
14	Average yield of cucumber crop under three irrigation regimes (SSDI) 2018	48
15	Average yield of cucumber crop under three irrigation regimes (SSDI) 2019	48
16	Average yield of zucchini crop under three irrigation regimes (SSDI) 2018	50
17	Average yield of zucchini crop under three irrigation regimes (SSDI) 2019	50

18	Average water use efficiency (WUE) under different	52
	irrigation regimes under (SSDI) for cucumber	
19	Average water use efficiency (WUE) under different	52
	irrigation regimes for under (SSDI) for zucchini	

LIST OF APPENDICES

No.	Title	Page
1	Information for assessing appropriation consistency for	66
	dribble water system framework GR 21/h under nursery	
	toward the start and the finish of the period	
2	Information for assessing appropriation consistency for	67
	dribble water system framework GR 4l/h under nursery	
	toward the start and the finish of the period	
3	Effect of different irrigation levels, different emitters and	69
	different drip irrigation systems on vegetative growth	
	characters, water productivity and total production of	
	cucumber plants during the two seasons 2018	
4	Effect of different irrigation levels, different emitters and	70
	different drip irrigation systems on vegetative growth	
	characters, water productivity and total production of	
	zucchini plants during the two seasons 2019	