

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Neuroprotective effects of Atorvastatin on Doxorubicin-induced cognitive impairment in rats

Thesis submitted for the partial fulfillment of Master degree in pharmaceutical sciences

(Pharmacology & Toxicology Department)

Presented by

Noha Mohamed Mounier Mohamed Aly

B. Pharm. (2013). Ain Shams University

Quality control specialist, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt

Under the supervision of:

- **Prof. Dr. Samar Saad Eldeen Azab**Professor of Pharmacology and Toxicology
 Faculty of Pharmacy, Ain Shams University
- **Dr. Amany Mohamed Ahmed Gad**Associate Professor of Pharmacology and Toxicology
 Egyptian Drug Authority (EDA), Formerly NODCAR
 - Dr. Sara Abdel Moneim Wahdan Lecturer of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

(2021)

Acknowledgments

First, I want to express my sincere everlasting gratitude and thanks to "Allah" who helps me and gives me the ability to accomplish this work.

It is a great pleasure to express my deepest thanks and appreciation to **Dr. Samar Saad Eldeen Azab**, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her generous guidance, encouragement and beneficial discussion during experimental work and revising the thesis. All credit goes to her for sharing in choosing the thesis point. I learned from her determination and knowledge that will benefit me greatly in my career.

My deep thanks, gratitude and sincere acknowledgment to Dr.

Amany Mohamed Ahmed Gad, Associate Professor of

Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, and Dr. Sara Abdel Moneim Wahdan, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for guidance in choosing the thesis point, supervising the experimental work steps and solving the daily problems, their beneficial advices and continuous encouragement. I am also grateful for their precious time to read this thesis and give their critical comments about it. The supervision and

support they gave me truly help the progression and smoothness of this work.

Last but not least, Words can never express my sincere thanks to **my father**, **mother**, **sister and brothers** for their endless love, support and encouragement to pursue this degree. They taught me how to face challenges with faith, they are a constant source of inspiration in my life and they always push me to achieve my goals. Without their encouragement, I could not finish this work. God bless them for me.

Noha Mohamed Mounier Mohamed Aly

List of Contents

Subject Page	9
1. List of Abbreviations	. I
2. List of Tables I	V
3. List of Figures	V
4. Introduction	
o Chemotherapy and chemobrain	1
o Treatment approaches in Chemotherapy- induced	
cognitive impairment	.3
o Doxorubicin Chemotherapeutic drug	.6
O DOX mechanism of action	.7
o DOX-induced Toxicities	9
o DOX-induced Chemobrain (chemotherapy-induced	ed
cognitive impairment)12	,
o Relation between dyslipidemia and cancer1	6
o Statins (cholesterol-lowering drugs) and cognitive	ve
function1	7
o Atorvastatin (cholesterol-lowering drug)22	2
o Heme oxygenase-1 (HO-1)2	<i>2</i> 5
o Endoplasmic reticulum stress (ER stress)2	29
o DOX and ER stress	32
o Statins and ER stress	34
5. Aim of work	5

LIST OF CONTENTS

6.	Materials and Methods	37
7.	Results	73
8.	Discussion	109
9.	Summary and conclusion	118
10	. References	124
11	. Arabic Summary	

List of Abbreviations

CNS	Central nervous system		
CICI	Chemotherapy-induced cognitive impairment		
DOX	Doxorubicin		
ROS	Reactive oxygen species		
METC	Mitochondrial electron transport chain		
BBB	Blood brain barrier		
TNF-α	Tumor necrosis factor alpha		
HMG Co-A	3-Hydroxy 3-methylglutaryl co-enzyme A		
reductase	reductase		
AD	Alzheimer's disease		
PD	Parkinson's disease		
MS	Multiple sclerosis		
ATV	Atorvastatin		
НО-1	Heme oxygenase-1		
НО-2	Heme oxygenase-2		
CO	Carbon monoxide		
NADPH	Nicotinamide Adenine Dinucleotide		
	Phosphate		
BVR	Biliverdin reductase		
RNS	Reactive nitrogen species		
ER	Endoplasmic reticulum		
UPR	Unfolded protein response		

LIST OF ABBREVIATOINS

ERAD	ER-associated degradation		
PERK	Double-stranded RNA-activated protein		
	kinase (PKR)-like ER kinase		
ATF6	Activating transcription factor 6		
IRE1	Inositol-requiring enzyme		
XBP1	X-box protein 1		
GRP78	Glucose-regulated protein78		
СНОР	C/EBP homologous protein		
Bax	Bcl-2 associated X protei		
BAK	Bcl-2 homologous antagonist/killer		
Bcl-2	B-cell lymphoma 2		
Bcl-xl	B-cell lymphoma-extra large		
JNK	c-JUN NH2-terminal kinase		
GSH	Reduced glutathione		
i.p.	Intra-peritoneal		
P.O.	peroral		
MWM	Morris water maze		
MDA	Malondialdehyde		
DNA	Deoxyribonucleic acid		
RNA	Ribonucleic acid		
COX-2	Cyclooxygenase- 2		
PA	Passive avoidance		
Apo-A1	Apolipoprotein A1		

LIST OF ABBREVIATOINS

TTP	Tristetraprolin		
NF- κB	Nuclear factor kappa B		
i-NOS	Inducible nitric oxide synthase		
IL	Interleukin		
PTP	permeability transition pore		
TUNEL	terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling		
Ca ²⁺	Calcium ions		
TCA	Trichloroacetic acid		

List of tables

Table	Title	Page
1	Sequences of primers sets used for the analysis	45
	of gene expression of the studied biomarkers	
2	Effect of ATV on step-through passive	49
	avoidance for the training session and test	
	session respectively in DOX-induced cognitive	
	impairment	
3	Effect of ATV on locomotor activity for all	51
	treated groups	
4	Effect of ATV on escape latency of Morris	54
	water maze during the four training days in	
	DOX-induced cognitive impairment	
5	Effect of ATV on morris water maze Probe trial	55
	test in DOX-induced cognitive impairment	
6	Effect of ATV on the hippocampal DOX-	61
	induced oxidative stress markers (MDA and	
	GSH levels)	
7	Effect of ATV on the hippocampal HO-1 levels	63
	in DOX-induced cognitive impairment	
8	Effect of ATV on the hippocampal DOX-	66
	induced inflammatory response (COX-2 and	
	TNF-α respectively)	
9	Effect of ATV on the hippocampal DOX-	70
	induced apoptotic response (caspase-3 and p53	
	respectively)	
10	Effect of ATV on the hippocampal DOX-	74
	induced ER stress apoptosis (CHOP and	
	GRP78 respectively)	