

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Cairo University Faculty of Veterinary Medicine

Use of Some Mycobacterial Peptides and Recombinant Proteins for Diagnosis of Boyine Tuberculosis

A thesis Submitted by

Wagdy Samir Beshir Youssef

(B.V. Sc. Fac. Vet. Med. Assiut. Univ. 2012) (M.V. Sc. Fac. Vet. Med. Cairo. Univ. 2018) For the Ph.D. degree in Veterinary Medicine (Microbiology)

Under Supervision of

Prof. Dr.

Kamelia Mahmoud Osman

Professor of Microbiology
Faculty of Veterinary Medicine - Cairo University

Prof. Dr.

Emad Mokhtar Riad

Chief Researcher of Bacteriology Animal Health Research Institute - Dokki Faculty of Veterinary Medicine Department of Microbiology

Approval Sheet

The examining committee approved Mr. Wagdy Samir Beshir Youssef for the degree of Ph. D. in Veterinary Medical Sciences (Microbiology) from Cairo University.

Ashr- Mrnach

M. Harhou

Examining and Judgment Committee

Prof. Dr. Ashraf Awaad Abeltwaab

Professor of Microbiology Faculty of Veterinary Medicine Benha University

Prof. Dr. Jakeen Kamal El-Jakee

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Mahmoud El-Sayed Hashad

Professor and Head of the Microbiology Department

Faculty of Veterinary Medicine

Cairo University

Dr. Emad Mokhtar Riad

Chief Researcher of Bacteriology

Animal Health Research Institute-Dokki

6/1/2022G

Cairo University Faculty of Veterinary Medicine

Supervision sheet

Prof. Dr. Kamelia Mahmoud Osman

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Emad Mokhtar Riad Chief Researcher of Bacteriology Animal Health Research Institute Dokki Cairo University Faculty of veterinary medicine Microbiology department

Name: Wagdy Samir Beshir Youssef.

Date of birth: 01/09/1990. **Nationality:** Egyptian. **Specialization:** Microbiology.

Thesis title: Use of some mycobacterial peptides and recombinant

proteins for diagnosis of bovine tuberculosis.

Degree: For the Ph.D. degree in Veterinary Medical sciences

(Microbiology).

Supervisors: Prof. Dr. Kamelia Mahmoud Osman

Professor of Microbiology, Faculty of Veterinary

Medicine, Cairo University. **Dr. Emad Mokhtar Riad**

Chief Researcher of Bacteriology, Animal Health

Research Institute, Dokki.

Abstract

In this study, some *M. bovis* recombinant peptides "recombinant early secretory antigenic target-6 (rESAT-6), recombinant major protein of M. bovis 64 (rMPB-64) and recombinant major protein of M. bovis 83 (rMPB-83)" were cloned, expressed and purified from well identified of *M. bovis* strains. They were used in both serum dependent tests as ELISA and whole blood techniques; IFN- y assay as a diagnostic tests for tuberculosis. So. we successfully cloned and expressed the rESAT-6, rMPB-64 and rMPB-83 proteins in pure form and identified by SDS-PAGE and immunoblotting technique. They were used in skin testing in infected guinea pigs by killed M. bovis and it showed clear response using different used doses of expressed proteins as well as it was used in ELISA on 500 serum samples from tuberculin tested animals and in Gamma interferon assay on 50 tuberculin tested animals in comparison with PPD. The obtained results proved the antigenicity and immunogenicity of the recombinant antigens as they can detect cases as tuberculous positive from tuberculin negative cases by ELISA and gamma interferon assay. The sensitivity and specificity of each used test were recorded and discussed. Results showed higher sensitivity and specificity of purified recombinant proteins over PPD when used in diagnosis of bovine tuberculosis in ELISA and IFN-y assay and superiority of these tests over tuberculin test. It was concluded that the purified rESAT-6, rMPB-64 and rMPB-83 were implementable as a specific and sensitive antigens alternative to ordinary diagnostic PPD. It also declare that use of this antigen resulted in a marked improvement in the ELISA and IFN-y release among both TST negative and TST positive cattle.

Keywords: *M. bovis*, ELISA, Gamma interferon, ESAT-6, MPB-83, MPB-64, bovine tuberculosis.

Dedication

To My Father's Spirit, My dear Mother,

My Brothers, My Sisters, their children,

My Wife

And

My Friends

Acknowledgment

First of all, I would like to express my deepest prayerful thanks to our merciful "GOD" for all gifts who gave me all over my life, his guidance, care and for giving me the power to terminate this work.

I am greatly indebted with my sincere gratitude and best thanks to **Prof. Dr. Kamelia Mahmoud Osman** Professor of Microbiology, Department of Bacteriology, Mycology and Immunology, Faculty of veterinary medicine, Cairo University, for her ideal guidance, creative supervision, constructive criticism this work was carried out, scientific knowledge as well as her great endless help and encouragement throughout this work.

No words can adequately express my sincere gratitude and deepest appreciations to **Prof. Or. Emad Mokhtar Riad** Chief researcher of Bacteriology, Animal Health Research Institute, Dokki, Giza, my spiritual teacher, for his keen supervision, continuous support, unfailing interest, critical comments the lot of time he spent in this work, sincere advice, unlimited facilitations, valuable suggestions, continuous encouragement and remarks and advices during the course of this investigation. I consider it an honor and privilege to have worked under his supervision that he thought me the basics of research and shared his insights into the microbiological world.

My great thanks are also to all staff members and personnel of the Department of Bacteriology, specially TB unit, Animal Health Research Institute, Dokki, Giza for all the facilitates and efforts which were important in completion of this study.

My Great thanks to all staff members of Microbiology Department, Faculty of Veterinary Medicine, Cairo University for their co-operation.

I wish to express my high appreciation and sincere thanks to **Dr. Amany** Nabil Dapph, Chief Researcher of Bacteriology, TB unit, Animal Health Research Institute, Dokki, Giza, for his excellent expert technical assistance, endless help, huge encouragement and support.

At the end, I would like to express my heartily deep thanks to my father's spirit, my mother, my brothers and my sisters for their motivation, inspiration and great support to pass all difficulties to terminate this work.

I would like to express my deep gratitude and appreciation to my brother **Osama Samir** for help and support throughout the whole work.

Finally, my thanks and appreciation to my wife for continuous encouragement throughout the whole work.

Thanks everyone who gave me a hand during this work.

Wagdy Samir Beshir

Contents

Title	Page	
1-Introduction.	1	
2-Review of literature.	5	
2.1. Prevalence of <i>Mycobacterium bovis</i> in cattle.	5	
2.2. Diagnoses of bovine tuberculosis.	13	
2.2.1. Diagnosis of bovine tuberculosis by Conventional methods.	13	
2.2.2. Blood based tests for diagnosis of <i>mycobacterium</i> using ELISA and gamma interferon assay.	19	
2.3. Specific mycobacterial antigens used in diagnosis of bovine tuberculosis.		
2.3.1. Purified protein derivative antigen (PPD).	31	
2.3.2. Mycobacterial Recombinant Antigens (rESAT-6, rMPB83 and rMPB64).	35	
3-Published Paper(s).	46	
4-Discussion.	78	
5-Conclusion.	99	
6-English Summary.	101	
7-References.	104	
8-Appendix.	131	

List of Figures

Fig. No.	Title	Page No.
1	PCR amplification of ESAT-6 gene located in M. bovis	
	genome; lane 1: 1kb DNA ladder, lane 2 and 3 represent a	
	distinct band in approximately 290 bps, Lane 4 is negative	
	control.	57
2	Restriction analysis of recombinant plasmid pQE30-ES	
	against 10kbpDNA ladder; The Lower band is approximately	
	350 bps while the upper band is about 4000 b.	57
3	SDS-PAGE analysis of <i>E. coli</i> expressing ESAT-6. Lane M:	
	protein molecular weight standard marker, the arrow pointed	
	to the target protein bands which were visualized by	- 0
	Coomassie blue staining.	58
4	Western blot analysis of <i>E. coli</i> expressing ESAT-6. Lane	
	M: protein molecular weight standard marker, the arrow	
	pointed to the developed blot indicated the presence of target	5 0
	protein.	59
5	PCR amplification of MPB-83 gene located in <i>M. bovis</i>	122
	genome.	132
6	Restriction analysis map of pQE30-83.	133
7	SDS-PAGE analysis of <i>E. coli</i> expressing MPB-83.	133
8	Western blot analysis of <i>E. coli</i> expressing MPB-83.	134
9	Amplifications of MPB-64 gene from <i>M. bovis</i> genome by	105
1.0	PCR.	135
10	Restriction analysis map of pQE30-64.	135
11	SDS-PAGE analysis of E. coli expressing MPB-64.	136
12	Western blot analysis of E. coli expressing MPB-64.	137
13	Comparison of the results of the tuberculin test, ELISA using	
	prepared antigens, commercial antigen and PPD.	141
14	Sensitivity and specificity of ELISA in cattle recruited in this	
	study, $n = 500$.	142
15	Results of in-vitro whole blood gamma-interferon assay in	
	comparison with tuberculin test.	144
16	Sensitivity and specificity of IFN- γ in cattle recruited in this	
	study, $n = 50$.	145

List of Tables

Table	Title	Page		
No.		No.		
1	Skin reactivity to different doses of prepared			
	recombinant antigens in guinea pigs sensitized with			
	killed Mycobacterium bovis.	59		
2	The results of the tuberculin test, ELISA using			
	prepared antigens, commercial antigen and PPD. Of			
	500 tested cows.	61		
3	Sensitivity and specificity of ELISA in cattle recruited			
	in this study, $n = 500$.	62		
4	Results of in-vitro whole blood gamma-interferon			
	assay.	62		
5	Sensitivity and specificity of IFN-γ in cattle recruited			
	in this study, $n = 50$.	65		
6	Skin reactivity to different doses of prepared			
	recombinant antigens in guinea pigs sensitized with			
	killed Mycobacterium bovis.	138		
7	Results of single intradermal cervical tuberculin test			
	in some dairy cattle at examined governorate.	139		
8	Serodiagnosis of bovine tuberculosis by ELISA			
	technique using bovine PPD, commercial mixture			
	antigen and recombinant antigens.	140		
9	Comparison of the results of the tuberculin test,			
	ELISA using prepared antigens, commercial antigen			
	and PPD. Of 500 tested cows.	141		
10	Sensitivity and specificity of ELISA in cattle recruited			
	in this study, $n = 500$.	142		
11	Results of in-vitro whole blood gamma-interferon			
	assay in comparison with tuberculin test.	143		
12	Sensitivity and specificity of IFN-γ in cattle recruited			
	in this study, $n = 50$.	144		

List of Abbreviations

AFB	Acid Fast Bacilli		
Ag85	Antigen 85		
BCG	Bacillus Calmette Guerine		
BTB	Bovine Tuberculosis		
CFP-10	Culture Filtrate Protein 10		
CFU	Colony forming unit		
CITT	Comparative Intradermal Tuberculin Test		
CMI	Cell Mediated Immunity		
ELISA	Enzyme linked immunosorbent assay		
ESAT-6	Early Secretory Antigenic Target 6		
EU	European Union		
HIV	Human immune deficiency virus		
IFN-γ	Interferon Gamma		
IgG	Immunoglobulin G		
IGRA	Interferon gamma release assay		
IT	Intradermal tuberculin		
kDa	Kilo Dalton		
L.N.	Lymph node		
LAM	Lipoarabinomannan		
L-J	Lowenstein-Jensen medium		
MOTT	Mycobacteria Other Than Tuberculosis		
MPB-64	Major Protein of <i>M. bovis</i> 64		
MPB-83	Major Protein of <i>M. bovis</i> 83		
MoAbs	Monoclonal antibodies		
MTC	Mycobacterium Tuberculosis Complex		
MW	Molecular weight		
Mtb	Mycobacterium tuberculosis		
NK	Natural Killer Cells		
NTM	Non-Tuberculous Mycobacteria		
NVL	Non-Visible Lesions		
OADC	Oleic Albumin Dextrose Catalase		
OIE	Office International Des Epizooties		
PCR	Polymerase chain reaction		
PPD	Purified Protein Derivative		
PPD-A	Avian Purified Protein Derivative		

i e				
PPD-B	Bovine Purified Protein Derivative			
RD	Region of difference			
RT	Real Time			
SCT	Single Cervical Tuberculin Test			
CDC DACE	sodium dodecyl sulphate polyacrylamide gel			
SDS-PAGE	electrophoresis			
SICTT	Single Intradermal Comparative Tuberculin skin Test			
ST-CF	Short Term Culture Filtrate			
TB	Tubercle Bacilli			
TST	Tuberculin Skin Test			
UK	United Kingdom			
WHO	World Health Organization			
ZN	Ziehl-Nelseen			