

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

CO-HYDROPROCESSING AND HYDROCRACKING OF ALTERNATIVE FEED MIXTURE (VACUUM GASOIL/USED LUBRICATING OIL/WASTE COOKING OIL) FOR PRODUCTION OF HIGH-QUALITY FUELS

By

Mohamed Sayed Abdo Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in **Chemical Engineering**

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY GIZA, EGYPT 2021

CO-HYDROPROCESSING AND HYDROCRACKING OF ALTERNATIVE FEED MIXTURE (VACUUM GASOIL/USED LUBRICATING OIL/WASTE COOKING OIL) FOR PRODUCTION OF HIGH-QUALITY FUELS

By

Eng. Mohamed Sayed Abdo Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

Under the Supervision of

Prof. Fatma El Zahraa H. Ashour

Chemical Engineering Department Faculty of Engineering Cairo University

Prof. Samia Abbas Hanafi

Egyptian Petroleum Research Institute (EPRI) Cairo, Egypt Dr. Ahmed A. Refaat Hussein

Chemical Engineering Department Faculty of Engineering Cairo University

Assoc. Prof. Dr. Tarek. M. Aboul-Fotouh

Mining and Petroleum Engineering Department, Faculty of Engineering Al-Azhar University

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY GIZA, EGYPT 2021

CO-HYDROPROCESSING AND HYDROCRACKING OF ALTERNATIVE FEED MIXTURE (VACUUM GAS OIL/USED LUBRICATING OIL/WASTE COOKING OIL) FOR PRODUCTION OF HIGH-QUALITY FUELS

By

Eng. Mohamed Sayed Abdo Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

Approved by the Examining Committee

Prof.: Fatma El Zahraa Hanafy Ashour (Thesis Main Advisor)

Chemical Engineering Dept., Cairo University, Faculty of Engineering

Prof.: Sahar Mohamed El-Marsafy (Internal Examiner)

Chemical Engineering Dept., Cairo University, Faculty of Engineering

Prof.: Yasser Mohamed Mostafa (External Examiner)

Egyptian Petroleum Research Institute (EPRI)

FACULTY OF ENGINEEREING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer: Mohamed Sayed Abdo Mohamed**

Date of Birth: 25 / 6 / 1989

Nationality: Egyptian

E-mail: m.sayed1989@gmail.com

Phone: 01007273539

Address: 68, St. No.3, Army OBs, Shobra, Qalyubia, Egypt.

Registration date: 1 / 03 / 2016 Awarding date: / /2021 Degree: Philosophy Doctorate

Department: Chemical Engineering

Supervisor:

- Prof. Fatma El Zahraa Hanfy Ashour (Thesis Main Advisor)
- Dr. Ahmed Ahmed Refaat Hussein
- Prof. Samia Abbas Hanafi
- Associated Prof. \ Tarek. M. Aboul-Fotouh

Examiners:

- **Prof. Fatma El Zahraa Hanafy Ashour** (Thesis Main Advisor)
- **Prof. Sahar Mohamed El-Marsafy** (Internal Examiner)
- **Prof. Yasser Mohamed Mostafa** (External Examiner)

Title of Thesis:

Co-hydroprocessing and hydrocracking of alternative feed mixture (vacuum gas oil/used lubricating oil/waste cooking oil) for Production of high-quality fuels

Keywords:

Used lubricating oil, vacuum gasoil, waste cooking oil, co-hydroprocessing, simulation.

Summary:

The aim of this thesis was to make a semi complete study about co-hydroprocessing of vacuum gasoil (VGO), waste cooking oil (WCO) and waste lube oil (WLO). This alternative feed mixture is studied under different reaction temperature and different mixture feed compositions, then industrial calibrated simulation case of hydrocracking unit is built to illustrate the effects new unconventional feed on unit integration and economics. Experimental work was conducted at the "Egyptian Petroleum Research Institute". Waste cooking oil (WCO) feedstock was acquired and collected from daily home use. Waste lube oil was sampled from "Suez Oil Processing Company". Vacuum gasoil (VGO) feedstock was acquired from Middle East Oil Refinery (MIDOR) in Alexandria, Egypt. The target of the experimental work is to determine the effect of feed mixture composition and reaction temperature on high-quality product fuels. The obtained results revealed that: adding WCO increases the reaction conversion and jet fuel yield, while adding WLO increases diesel product quality (cetane index).

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Sayed Abdo Date: / /20	<i>J L</i> 1
--------------------------------------	--------------

Signature:

Acknowledgment

Firstly, I would like to thank Allah for giving me the effort to do this thesis.

I wish to express my sincere thanks to Prof. Fatma Ashour, Dr. Ahmed Ahmed Refaat, Prof. Samia Abbas Hanafi and Associate Prof. Dr. Tarek. M. Aboul-Fotouh for their sustained guidance and keen supervision.

Thanks, appreciation and gratitude for my wife, my mother, my aunt, my father, my brothers, my sisters for their encouragement and patience.

Finally, I would like to thank everyone who helped me in this study.

Table of Contents

Disclaimer	i
Acknowledgment	ii
List of Figures	vi
List of Tables	ix
List of symbols and abbreviations	
Abstract	
CHAPTER 1: Introduction	
CHAPTER 2: Literature Review	4
2.1 Hydro-processing introduction	4
2.1.1. Petroleum refinery process	5
2.1.2. Heavy feedstocks	5
2.1.3. Hydrocracking feed	5
2.1.4 Refinery Products	8
2.2 Upgrading of heavy hydrocarbons	9
2.2.1 Chemistry	9
2.2.2 Heavy oil upgrading processes	9
2.3 Hydrocracking of conventional hydrocarbon	20
2.3.1 Hydrocracking history	20
2.3.2 Hydrocracking reactor types	21
2.3.3 Hydrocracking operating conditions	22
2.3.4 Hydro-processing catalysts	23
2.3.5 Chemistry and Mechanism of Hydrocracking	26
2.3.6 Hydrocracking catalyst deactivation mechanism	28
2.4. Waste lube oil (WLO) re-refining and processing	30
2.4.1 The meaning of waste oil / used oil:	30
2.4.2. Impurities in waste lubricating oil	32
2.4.3. Environmental effect of spilling waste oil	36
2.4.4. Waste oil re-refining history:	36
2.5. Waste lubricating oils recycling technologies	41
2.5.1. Waste oil reclamation	

2.5.2. Minimization of waste mineral oils at source	43
2.5.3. Re-refining processes of waste lube oil	44
2.6. Waste cooking oil recycling and processing for biodiesel production	55
2.6.1. What is waste cooking oil	56
2.6.2. Lipuid derived biofuels	57
2.6.3. Advantages and disadvantages of using green diesel	62
2.6.4. Green diesel production from waste cooking oil hydro-processing	62
2.6.5. Biomass in oil refining industry	65
2.7. History of waste oils co-hydroprocessing	66
CHAPTER 3: Aim of The Work	70
CHAPTER 4: Experimental Methodology	71
4.1. Materials	71
4.2. Characterization	71
4.2.1. WCO, WLO and VGO characterization	71
4.2.2. Catalyst characterization	71
4.2.3. Process description	73
4.2.4. Hydrocracking activity test	73
4.2.5. Product analysis	74
4.3. Process simulation case	74
4.3.1. Process design.	76
4.3.2. Process simulation and analysis	77
CHAPTER 4: Results and Discussion	84
4.1. Result and analysis of experimental work	84
4.1.1. Gaseous product analysis	84
4.1.2. Conversion	86
4.1.3. C15-C18 paraffin carbon yield	87
4.1.4. Hydro-desulfurization efficiency	92
4.1.5. Hydro-denitrification efficiency	94
4.1.6. Liquid product specific gravity	95
4.1.7. Liquid product kinematic viscosity	96
4.1.8. Liquid product Pour point	97
4.1.9. Liquid product Flash point	98
4.1.10. Gasoline-range carbon yield	99

4.1.11. Gasoline-range carbon yield quality	99
4.1.12. Kerosene -range carbon yield	101
4.1.13. Diesel -range carbon yield	101
4.1.14. Diesel-range carbon quality	103
4.2. Result and analysis of simulation case	104
4.2.1. Performance evaluation of simulation model	104
4.2.2. Market and economic analysis	112
CHAPTER 5: Conclusions	118
References	120

List of Figures

Figure 2.1: Refinery process flow diagram.	6
Figure 2.2: Viscosity vs API gravity and density of conventional crude oil	7
Figure 2.3: Molecular structure of asphaltene	
Figure 2.4:Refinery processes operating conditions (pressure and temperature)	10
Figure 2.5: Process flow diagram of Visbreaking unit.	10
Figure 2.6: Process flow diagram of Delayed Coker Unit (DCU).	11
Figure 2.7: Process flow diagram of Fluid Catalytic Cracking (FCC) unit	
Figure 2.8: FCC reactor and regenerator configuration.	14
Figure 2.9: Process flow diagram of Residue De-Sulfurization (RDS) unit	15
Figure 2.10: Process flow diagram of single-stage hydrocracking unit.	
Figure 2.11: Process flow diagram of once-through hydrocracking unit	17
Figure 2.12: Process flow diagram of two-stage hydrocracking unit	18
Figure 2.13: Process flow diagram of separate hydrotreater with single-stage	
hydrocracking unit	18
Figure 2.14: Refining processes used for feedstock conversion to liquid products	20
Figure 2.15: Types of hydro-processing reactors.	22
Figure 2.16: Silica / alumina transactions during acid site dehydration	24
Figure 2.17: Catalyst common industrial shapes.	26
Figure 2.18: Hydrocracking reactions.	27
Figure 2.19: Deposits of carbon and metal on catalyst with time.	28
Figure 2.20: Coke formation pathways on hydrocracking catalysts.	29
Figure 2.21: Different systems for treating used oils.	34
Figure 2.22: Management systems for used oil.	37
Figure 2.23: The environmental effect of oil spilt in water	37
Figure 2.24: Hierarchy of waste oils management.	41
Figure 2.25: Basic outline of acid/clay bleaching technologies.	46
Figure 2.26: Basic outline of vacuum distillation and hydrogenation processes	48
Figure 2.27: Thin film evaporator configuration.	49
Figure 2.28: Block diagram of Mohawak process technology for used oil re-refining	51
Figure 2.29: Block diagram represents BERC process technology	52
Figure 2.30: Block diagram represent safety Kleen technology.	53
Figure 2.31: Process block flow diagram of Interline process technology	55
Figure 2.32: Transesterification reaction of biodiesel production	58
Figure 2.33: Process flow diagram for base catalyzed biodiesel production	58
Figure 2.34: Block flow diagram of green diesel production process	61
Figure 2.35: production map of biodiesel and green diesel	62

Figure 4.1	: Catalyst beds configuration in the experimental reactor	75
	: Experimental process block flow diagram	
Figure 4.3	: Process flow diagram of Unicracking unit	78
	: Hydrocracker model configuration in ASPEN HYSYS V.11	
Figure 5.1:	: Possible pathways of fresh and used vegetable oils oxygen removal	85
Figure 5.2	: Effect of temperature on conversion of VGO, WCO, WLO mixtures	
	feedstock(pressure: 7 MPa, LHSV:1.5 hr. ⁻¹ , H ₂ /Oil: 400/ 400 Nm ³ /m ³ .)	87
Figure 5.3	: Hydro-processing reaction routes based on oleic acid, and stearic acid	89
Figure 5.4	: Effect of temperature on C15-C18 paraffin yield from VGO, WCO, WLO	
	mixtures hydro-processing (pressure: 7 MPa, LHSV:1.5 hr. ⁻¹ , H ₂ /Oil: 400/ 400)
	Nm ³ /m ³ .).	
Figure 5.5:	Effect of temperature on hydrdeoxygenation (HDO%) of VGO, WCO, WLO	
	mixtures processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/ 400	
	Nm^3/m^3 .).	92
Figure 5.6	: Effect of temperature on hydrdecarbonylation(HDC%) of VGO, WCO, WLO	
C	mixtures processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/ 400	
	Nm^3/m^3 .).	92
Figure 5.7	: Effect of temperature on hydro-desulfurization (HDS%) of VGO, WCO, WLO	
C	mixtures processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/ 400	
	Nm^3/m^3 .).	94
Figure 5.8	: Effect of temperature on hydro-denitrification (HDN%) of VGO, WCO, WLO	
C	mixtures processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/ 400	
	Nm ³ /m ³ .).	95
Figure 5.9	: Effect of temperature on liquid product specific gravity of VGO, WCO, WLO	
C	mixtures processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/ 400	
	Nm^3/m^3 .).	96
Figure 5.10	0: Effect of temperature on liquid product kinematic viscosity of VGO, WCO,	
	WLO mixtures processing (pressure: 7 MPa, LHSV:1.5 hr. ⁻¹ , H ₂ /Oil: 400/ 400	
	Nm^3/m^3 .).	
Figure 5.1	1: Effect of temperature on liquid product pour point of VGO, WCO, WLO	
_	mixtures processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/ 400	
	Nm^3/m^3 .).	98
Figure 5.12	2: Effect of temperature on liquid product flash point of VGO, WCO, WLO	
_	mixtures processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/ 400	
	Nm ³ /m ³ .)	99
Figure 5.1	3: Effect of temperature on Gasoline yield from VGO, WCO, WLO mixtures	
	hydro-processing (pressure: 7 MPa, LHSV:1.5 hr. ⁻¹ , H ₂ /Oil: 400/400 Nm ³ /m ³	.)
		00

Figure 5.14: Effect of temperature on RON of Gasoline produced from VGO, WCO, W	VLO
mixtures hydro-processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/	
$400 \text{Nm}^3/\text{m}^3$.)	. 102
Figure 5.15: Effect of temperature on Kerosene yield from VGO, WCO, WLO mixture	es
hydro-processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/400	
Nm^3/m^3 .)	. 102
Figure 5.16: Effect of temperature on Diesel yield from VGO, WCO, WLO mixtures	
hydro-processing (pressure: 7 MPa, LHSV:1.5 hr1, H ₂ /Oil: 400/400	
Nm^3/m^3 .)	. 103
Figure 5.17: Effect of temperature on Diesel yield from VGO, WCO, WLO mixtures	
hydro-processing (pressure: 7 MPa, LHSV:1.5 hr1, H2/Oil: 400/400	
Nm3/m3.)	.104
Figure 5.18: Predicted and actual reaction conversion	.106
Figure 5.19: Predicted and actual gasoline yield in weight percent	.107
Figure 5.20: Predicted and actual kerosene yield in weight percent	.108
Figure 5.21: Predicted and actual diesel yield in weight percent	108
Figure 5.22: Predicted and actual middle distillate yield (kerosene yield + diesel yield)	
in weight percent	.109
Figure 5.23: Predicted and actual values of gasoline RON	110
Figure 5.24: Predicted and actual values of diesel CI	.111
Figure 5.25: Predicted make up hydrogen from hydrocracking simulation model at	
different reaction temperature and feed mixture	.112
Figure 5.26: crude oil barrel price (US dollar \$ / bbl.) in last years	113