

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

NUMERICAL INVESTIGATION OF SMOKE MANAGEMENT SYSTEM IN A MOVIE THEATRE

By

Yousra Abdelreihim Hussein Toulan

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

Master of Science

In

MECHANICAL POWER ENGINEERING

NUMERICAL INVESTIGATION OF SMOKE MANAGEMENT SYSTEM IN A MOVIE THEATRE

By

Yousra Abdelreihim Hussein Toulan

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

Master of Science

In

MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil
Professor, Mechanical Power Engineering Department,
Faculty of Engineering,
Cairo University

NUMERICAL INVESTIGATION OF SMOKE MANAGEMENT SYSTEM IN A MOVIE THEATRE

By

Yousra Abdelreihim Hussein Toulan

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee:

Prof. Dr. Essam E. KhalilThesis Main Advisor Professor, Mechanical Power Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Mahmoud Abdelwahab Kassem Internal Examiner Professor, Mechanical Power Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Farouk Abdelgawad External Examiner Professor, Chair, Mechanical Power Engineering, Faculty of Engineering, Zagazig University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer:** Yousra Abdelreihim Hussein Toulan

Date of Birth: 24/4/1995

Nationality: Egyptian

E-mail: yoaraabdelreihim@yahoo.com

Phone: 01142121001

Address: 7 L Abel Raoouf St, New Maadi ,Cairo

Registration Date: 1/10/2018

Awarding Date: / / 2021

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil (Thesis Main Advisor)

Examiners: Prof. Dr. Essam E. Khalil (**Thesis Main Advisor**)

Prof. Dr. Mahmoud Abdelwahab Kassem (Internal Examiner) Prof. Dr. Ahmed Farouk Abdelgawad (Professor, Faculty of Engineering, Zagazig University (External Examiner)

Title of Thesis: NUMERICAL INVESTIGATION OF SMOKE

MANAGEMENT SYSTEM IN A MOVIE THEATRE

Key Words: Fire Dynamics Simulator, Smoke Management System, Movie Theatre,

Concentration of Carbon Monoxide, Visibility

Summary:

Smoke management system in all buildings received great interest as a way to decrease fatalities during fires as it prevents the spread of fire and provides a safe escape route for occupants. The smoke has many dangerous effects as it causes asphyxiation and death. Additionally, it reduces the visibility thus will lead to difficulty in the evacuation during the fire. This research provides a numerical study for smoke control in the movie theatre. This research investigates the effect of the fire source location in the case of the natural ventilation system on basic design parameters such as smoke layer height, concentration of Carbon Monoxide (CO), temperature, and visibility at different heights and different places in the movie theatre. Also, the effect of natural ventilation and mechanical ventilation on the same design parameters are studied.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:	/	/2021
Signature:			

ACKNOWLEDGMENT

I would like to thank **Prof. Dr. Essam E. Khalil** for his guidance, motivation, assistance, and valuable comments that added to this research and perfect supervision. I appreciate everything he has done for me. I would like to thank Eng.Mostafa Shawqy and Eng. Mohamed Elaqabawy for their helpful suggestions. I am also grateful to my home-university "Université Française d'Égypte" for their motivation and cooperation. Finally, I am grateful to my parents for their encouragement in completing this thesis.

TABLE OF CONTENTS

LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	XI
CHAPTER 1 INTRODUCTION	1
1.1 Fire	1
1.2 Smoke	
1.3 Tenability Criteria	3
1.4 Smoke Management	4
1.5 Fatal Hazards	4
1.6 Fundamental Concepts	6 6
1.7 Computational Fluid Dynamics (CFD) and Fire Dynamics Simulator (FDS).	6
1.8 Conclusions	7
CHAPTER 2 LITERATURE REVIEW	8
2.1 Effect of makeup air	8
2.1.1 The Work of Li <i>et al.</i> [17]	
2.2 Effect of Natural Ventilation	
2.2.1 The work of Zhang <i>et al.</i> [19]	
2.2.2 The work of Wang <i>et al.</i> [20]	
2.3 Effect of Mechanical Ventilation	19
2.3.1 The work of Shi <i>et al.</i> [22]	
2.3.2 The work of Hassan [23]	
2.3.3 The work of Mi <i>et al.</i> [24]	
2.3.4 The work of Huang <i>et al.</i> [25]	
2.4 Effect of Vent Location	
2.5 Effect of smoke barrier	31

2.5.1 The work of Safarzadeh <i>et al.</i> [27]	31
2.6 Effect of makeup air supply arrangement	32
2.6.1 The work of Kerber <i>et al.</i> [28]	
2.6.2 The work of Abotaleb [29]	35
2.7 Effect of location of fire sources	
2.7.1 The work of Qin <i>et al.</i> [30]	
2.7.2 The work of Selim [31]	
2.8 Effect of ambient pressure	
2.9 Effect of geometry	
2.10 Summary	
2.10.1 Effect of makeup an	
2.10.3 Effect of mechanical ventilation	
2.10.4 Effect of vent location	
2.10.5 Effect of smoke barrier	
2.10.6 Effect of fire-source location	
2.10.7 Effect of makeup air supply arrangements	
2.10.9 Effect of geometry	
2.11 Scope of the present work	
2.12 Conclusions	
2.12 Concrusions	
CHAPTER 3 Description of FDS and GOVERNING EQUATIONS	50
3.1 Description of FDS [37]	50
3.1.1 Hydrodynamic Model	
3.1.2 Combustion Model	
3.1.3 Radiation Transport	
3.2 Governing Equations	
3.2.1 Mass and Species Transport [37]	
3.2.3 Energy Transport [37]	
3.2.4 Equation of State [37]	
3.3 Visibility [34]	53
3.4 Large Eddy Simulation (LES) [37]	53
3.5 Combustion (Mixture Fraction Model) [37]	
3.6 Radiation (Radiation Transport Equation) [37]	
3.7 The Heat Conduction Equation for a Solid [37]	
3.8 Radiation Heat Transfer to Solids [37]	
3.9 Convective Heat Transfer to Solids [37]	57

CHAPTER4 PRINCIPLES OF NUMERICAL INVESTIGATION	58
4.1 Experimental Model	58
4.1.1 Geometry of Test Compartment	
4.1.2 Equipment for measurements and visual monitoring	
4.1.3 Description of the experiment	59
4.2 Present Numerical Model	59
4.3 Comparison between present numerical and experimental results	61
4.3.1 Temperature	
4.3.2 Smoke-Layer Height	
4.3.3 Gas Concentrations	
4.4 Conclusions	
4.5 Model Description, Fire Scenario and Simulation Inputs	
4.6 Computational Domain and Mesh Sensitivity Analysis for the Model	76
4.7 Conclusions	
4.7 Conclusions	70
CHAPTER 5 RESULTS AND DISCUSSIONS	79
5.1 Effect of Fire-Source Location	79
5.1.1 Effect on smoke-layer thickness	
5.1.2 Effect on carbon monoxide concentration	
5.1.3 Effect on Temperature	
5.1.4 Effect on Visibility	
5.2 Effect of Natural Ventilation	
5.2.1 Effect on smoke-layer thickness	
5.2.2 Effect on carbon monoxide concentration	
5.2.3 Effect on Temperature	
5.2.4 Effect on Visibility	
•	
5.3 Effect of Mechanical Ventilation	
5.3.1 Effect on smoke-layer thickness	
5.3.2 Effect on carbon monoxide concentration	
5.3.3 Effect on Temperature	
•	
5.4 Summary of the Results	116
5.4.1 Effect of Fire-Source Location	
5.4.2 Effect of Natural Ventilation	
5.4.3 Effect of Mechanical Ventilation	
5.5 Evacuation Plans	119
CHAPTER 6 CONCLUSIONS AND SUGGESTED FUTURE WORK	121
6.1 Conclusions	121
6.2 Recommendations for future work	122
DEFEDENCES	105
REFERENCES	125
APPENDIX A	128

LIST OF TABLES

Table 1. 1: Tenability criteria for the human at level 2m [10]	3
Table 1.2: Tenability criteria for firefighters [11]	
Table 1.3: Effect of carbon monoxide concentration related to different exposure tin	ne
[12]	
Table 1.4: Limits for occupational exposure to carbon dioxide [7]	6
Table 2.1: Summary of the simulated cases [17]	
Table 2.2: Summary of the simulated cases [18]	
Table 2.3: Summary of the simulated cases [20]	
Table 2.4: Summary of the simulated cases [21]	
Table 2.5: Summary of the simulated cases [23]	
Table 2.6: Summary of the simulated cases [24]	
Table 2.7: Summary of the simulated cases [25]	
Table 2.8: Summary of the simulated cases [26]	. 29
Table 2.9: Temperature, CO and CO ₂ concentration properties inside the averaging	
zone [27]	. 32
Table 2.10: Temperature, CO and CO ₂ concentration properties for a heat-release-	
rate of 5,000 kW for the various velocity of air curtain inside the averaging zone	
[27]	. 32
Table 2.11: The simulation work [28]	. 33
Table 2.12: Summary of the simulated cases [29]	
Table 2.13: Summary of the simulated cases [30]	. 39
Table 2.14: Summary of the simulated cases [32]	. 43
Table 4. 1: Summary of the present design cases	
Table 4. 2: The volume flow rates of exhaust smoke and makeup air at different	
ACH	. 73
Table 4. 3: Mesh independence test	. 76
Table 5. 1: Summary of the results of changing fire-source location	116
Table 5. 2: Summary of the results of the effect of natural ventilation	117
Table 5. 3: Summary of the results of the effect of mechanical ventilation	118
Table 5. 4: Critical time at which the values of CO, temperature, and visibility start	to
be lower than the critical limits, for cases 1, 2 and 3 at the entry door	119
Table 5. 5: Critical time at which the values of CO, temperature, and visibility start	
to be lower than the critical limits, for cases 1 and 4 at the entry and emergency	
doors	119
Table 5. 6: Critical time at which the values of CO, temperature, and visibility start	
be lower than the critical limits, for cases 1, 5,6,7,8, and 9 at the entry and emergen	су
doors.	-

LIST OF FIGURES

Figure 1.1: The Fire Triangle [2]	1
Figure 1.2: Hazard of Fires [6].	2
Figure 1.3: Plug-holing Phenomenon [9].	
Figure 2.1: Geometry of the atrium [17].	
Figure 2.2: Smoke characteristics: a) Temperature variation with height and b)	
Smoke-layer height variation with time [17]	9
Figure 2.3: Configuration of the atrium model [18]	
Figure 2.4: Impact of the velocity of make-up air on tenability conditions: a) smoke-	
layer height and b) visibility [18].	
Figure 2.5: Impact of using mechanical ventilation on tenability conditions at point A	
of Figure 2.3 [18]	
Figure 2.6: Effect of changing the makeup air inlet height on the smoke-layer height	
[18]	
Figure 2.7: Changing the distance between the fans: a) distance between fans = 5 m	
and b) distance between the fans = 6.3 m [18]	13
Figure 2.8: Effect of increasing the distance between fans on visibility at $X = 8.5$ m	
after 460 sec: a) distance between fans = 5 m , b) distance between fans = 6.3 m	
[18]	13
Figure 2.9: Geometry of the building [20].	15
Figure 2.10: Comparison of smoke temperature in stairwell under various wind	
conditions: (a) first floor and (b) 10 th floor [20]	16
Figure 2.11: Comparison of CO concentration in stairwell under various wind	
conditions: (a) first floor and (b) 10 th floor [20]	16
Figure 2.12: Geometry of the atrium [21].	17
Figure 2.13: Temperature rise variation with time for the different scenarios:	
a) scenarios 1-3 and b) scenarios 4-6 [21]	
Figure 2.14: Schematic drawing of the model: a) atrium and b) shop [22]	19
Figure 2.15: Interface height and smoke temperature inside the shop for various	
heat release rates and mechanical exhaust rates [22].	
Figure 2.16: Sectional elevation of the simulated internal geometry of Galatsi Arena	
[23]	
Figure 2.17: Fire locations at first spectator raw [23].	
Figure 2.18: Comparison of the smoke- layer height between the natural ventilation	
and mechanical ventilation: a) natural ventilation and b) mechanical ventilation	
[23]	22
Figure 2.19: Comparison of CO concentration between the natural ventilation and	
mechanical ventilation at Z=20 m: a) natural ventilation and b) mechanical	
ventilation [23].	
Figure 2.20: Comparison of the temperature of the smoke between natural ventilation	n
and mechanical ventilation at Z=20 m: a) natural ventilation and b) mechanical	
ventilation [23].	
Figure 2. 21: Comparison of the visibility between natural ventilation and mechanical	
ventilation at Z=20m: a) natural ventilation and b) mechanical ventilation [23]	
Figure 2.22: A schematic sketch of the electric power compartment [24]	24
Figure 2.23: Comparison of temperature for various scenarios at a simulation time	
of 150 sec: a) natural system conditions, b) extract system conditions and c) balanced	
system conditions [24]	
Figure 2.24: Geometry of the tunnel [25]	26

Figure 2. 25: Temperature variation with time at different locations: a) ceiling	
and b) height 2 m [25]	. 27
Figure 2.26: Visibility variation with time for different scenarios: a) condition A1,	
b) condition A2, c) condition A3 and d) condition A4 [25]	. 28
Figure 2.27: Schematic drawing of the geometry of capital gymnasium of Beijing	
[26]	. 29
Figure 2.28: Smoke-layer height at various natural smoke- exhaust systems [26]	. 29
Figure 2.29: Smoke-layer height for various ceiling mechanical smoke- exhaust	
systems [26]	. 30
Figure 2.30: Smoke- layer height for various mechanical smoke- exhaust systems	
L J	30
Figure 2.31: Geometry of the compartment a) without and b) with air curtain [27]	31
Figure 2.32: Plan view of the arrangement of the air supply vents (a) symmetric,	
(b) asymmetric, (c) one per floor and (d) corner [28].	33
Figure 2.33: Smoke-layer height variation with makeup air velocity [28]	. 34
Figure 2.34: Comparison of heat-release- rate at various supply makeup air velocitie	es
for various arrangements: a) symmetric, b) asymmetric and c) one vent per floor	
and corners [28]	34
Figure 2.35: Schematic drawing of the mall [29]	
Figure 2.36: Smoke- layer height variation with time [29]	. 37
Figure 2.37: Soot mean density [29].	38
Figure 2.38: Schematic diagram of fire sources at different locations [30]	39
Figure 2.39: Height of the smoke layer at various fire source locations [30]	39
Figure 2.40: Smoke characteristics at various fire source locations: a) mean soot	
density and (b) mean temperature [30]	40
Figure 2.41: Schematic drawing for the mosque with fire source at the corner	
(Simulation 1) [31]	41
Figure 2.42: Schematic drawing for the mosque with fire source at the center	
(Simulation 2) [31]	41
Figure 2.43: Temperature of the smoke-layer variation with time at level	
1.8 m above the main hall ground [31]	42
Figure 2.44: Temperature of the smoke-layer variation with time at level	
1.8 m above the first floor [31]	42
Figure 2.45: Temperature of the smoke- layer variation with time at level	
1.8 m above the second floor [31].	42
Figure 2.46: Schematic drawing of the multipurpose hall showing the fire source	
location [32]	43
Figure 2.47: Concentration of CO ₂ variation with the Air Change per Hour (ACH):	
(a) Ground floor and (b) Mezzanine floor [32].	44
Figure 2.48: Temperature of smoke variation with Air Change per Hour (ACH). (a)	
Ground floor and (b) Mezzanine floor [32]	44
Figure 2.49: Geometry of the tunnel [33]	
Figure 2.50: Smoke characteristics at various ambient pressure and heat-release-rate	
a) exhaust rate, b) thickness of the smoke layer and c) average velocity of the smoke	•
[33]	
Figure 2.51: Input geometry of 3D cinema model [34]	46
Figure 2.52: Spread of smoke under the ceiling and formation of toxic gas clouds	
during the simulation time: the 11 th second at the top and 22 nd second at the bottom	
[34]	
Figure 4. 1: Test compartment used in the experiment [41]	
Figure 4. 2: Top view of the exit sign and positions of the camera of visualization in	