

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

The Relation between Genetic Variance of Some Selected Genes and Therapeutic Effect of Asparaginase in Childhood Acute Lymphoblastic Leukemia

For the Partial Fulfillment of the Master Degree of Science in Zoology

Submitted By Yomna Hesham Youssef

B.Sc. (2014) in Zoology Faculty of Science, Ain Shams University

Under supervision of Prof. Dr. Nefissa H. Meky

Professor of Physiology Zoology Department Faculty of Science Ain Shams University

Dr. Ahmed F. Soliman

Assistant Professor of Biochemistry
Faculty of Science
Ain Shams University

Dr. Sara M. Makkeyah

Lecturer of Pediatrics Faculty of Medicine Ain Shams University

Zoology Department Faculty of Science Ain Shams University 2021

Ain Shams University

Faculty of Science

Name : Yomna Hesham Youssef

Scientific Degree : M.Sc. in Zoology

Department: ZoologyFaculty: ScienceUniversity: Ain Shams

Graduation Year : 2014

I declare that this thesis has been composed by myself and the work herein has not been submitted for a degree at this or any other university.

Yomna Hesham Youssef

To my beloved parents, my inspiration source and who gave me the strength when I thought to give up

Acknowledgment

First of all, I offer thanks always to ALLAH, for his great care and guidance in every step of my life and for giving me the ability to complete this work and who made all things possible.

It was a great pleasure for me to express my deep gratitude and appreciation to **Prof. Dr. Nefissa H. Meky,** Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University, for her continuous guidance, advice and supervision and sacrificing a lot of her precious time to revise each and every step of this study. It is hard for me to find the appropriate words that would do her favors.

I would like to express my deep gratitude to **Dr. Ahmed F. Soliman,** Assistant professor of Biochemistry, Faculty of Science, Ain Shams University, for his keen supervision and continuous assistance and constant support and encouragement are much appreciated. I am grateful in every possible way for his wise opinions and critical comments throughout the whole study and work.

I wish also to express my deep gratitude to **Dr. Sara M. Makkeyha**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her help in the collection of the study samples, sincere guidance, generous help, encouragement and patience.

I wish also to express my thanks to all my family for their endless support and unyielding faith in me and for their tolerance of my absence, physically and emotionally stress many, many thanks. The completion of this thesis would have never been conceivable without their fervent motivation.

Yomna H. Youssef

Abstract

Background: Asparaginase (ASNase) is a key component in the treatment protocols of childhood acute lymphoblastic leukemia (ALL). Asparagine synthetase (ASNS) and the basic region leucine zipper activating transcription factor 5 (ATF5) mediate the anti-leukemic effect of ASNase. Few reports studied the association between polymorphisms in these genes and treatment-related toxicity and response, and the results were controversial. Therefore, the current study aimed to investigate the association of *ASNS* and *ATF5* polymorphisms with the susceptibility to ASNase-related toxicity and disease outcome in a population of childhood ALL Egyptian patients.

Methods: In this study, 88 children with ALL were enrolled and genotyped for *ASNS* T629A and *ATF5* C362T polymorphisms using allelic discrimination assay.

Results: The studied polymorphisms did not associate with hypersensitivity or thrombosis, while the *ATF5* C362T polymorphism was associated significantly with decreased ASNase-associated pancreatitis (AAP) risk under allelic and dominant models. Patients carrying AA/TA genotypes of *ASNS* T629A polymorphism had a significantly better overall survival (OS) compared to patients with TT genotype, the same tendency was found in *ATF5* C362T polymorphism where patients carrying TT/CT genotypes had a significantly better OS and longer event-free survival (EFS) compared to patients with CC genotype. Multivariate analysis confirmed the independent prognostic value of the *ATF5* C362T dominant model.

Conclusion: *ATF5* 362TT and CT genotypes were associated with decreased risk to develop AAP and better disease outcome demonstrating a low risk for events and superior survival.

Contents

List of tables	I
List of figures	II
List of abbreviations	III
Introduction	V
Aim of the work	IX
I. Review of Literature	
1. Acute lymphoblastic leukemia	1
1.1. Epidemiology	
1.2. Classification	
1.2.1. French-American-British classification	
1.2.2. World Health Organization classification	
1.3. Signs, symptoms and clinical presentation	
1.4. Diagnosis	
1.4.1. Routine primary diagnosis	
1.4.2. Immunophenotyping and cytogenetics	
❖ <u>Immunophenotyping</u>	
➤ B-cell acute lymphoblastic leukemia	
T-cell acute lymphoblastic leukemia	
* Cytogenetics	
> Hyperdiploidy	
> Hypodiploidy	
Ets variant 6-runt-related transcription factor 1	
Transcription factor 3-PBX homobox 1	
➤ Breakpoint cluster region-Abelson murine leukemia	
oncogene homolog 1	
> Philadelphia- like ALL	
 Myeloid/lymphoid or mixed lineage leukemia rearrangemen 1.5 Diele stratification 	
1.5. Risk stratification	
1.6. Early response and minimal residual disease	
1.7.1 Remission induction phase	
1.7.1. Remission induction phase	
1.7.2. Consolidation phase	
1.7.3. Maintenance (continuation) therapy	
1.7.4. Central nervous system-directed therapy	
2. L-asparaginase	41

2.1. Historical background	22
2.2. Sources	
2.3. Mechanism of action	23
2.4. L-asparaginase available for clinical use	24
2.5. Complications related to L-asparginase treatment	25
2.5.1. Hypersensitivity	25
2.5.2. Pancreatitis	27
2.5.3. Thrombosis	27
2.5.4. Other complications	29
3. Polymorphisms of L-asparaginase pathway	29
3.1. Asparagine synthetase	
3.1.1. Role of ASNS in cancer	
3.1.2. Up-regulation of ASNS expression by ALL cells	
3.2. Activating transcription factor 5	
3.2.1. Role of ASNS in cancer	
II. Subjects and Methods	
1. Subjects	
1.1. Specimen collection	34
2. Methods	
2.1. Diagnosis	
Cytogenetic analysis	35
➤ Immunophenotyping	
2.2. Response assessment	
2.3. Toxicity	
2.4. Molecular analysis	
2.5. Assessment of protein stability	
2.6. Statistical analysis	
III. Results	
1. Demographic and clinical data of ALL patients	55
2. Genotypic distribution and allelic frequencies	
3. Analyzing protein stability	
4. Gene polymorphisms and the risk of ASNase-related toxicity	
5. Association of ASNS and ATF5 polymorphisms with patien	
clinicopathological characteristics	
6. Association of gene polymorphisms with disease recurrence	
survival outcome	

IV. Discussion	68
VI. Summary	
References	
Arabic Summary	
Arabic Abstract	

List of Tables

Table No.	Subject	Page
1	World health organization classification of ALL	4
2	Asparaginase regimen in different CCG risk groups	34
3	Asparaginase regimen in different Total XV risk groups	34
4	Polymorphisms tested in ASNS and ATF5 genes	40
5	Patients' general characteristics	56
6	Treatment protocol outcomes and asparaginase- related toxicity among studied group	57
7	Genotype and allele frequencies of the studied genes	58
8	Association of ASNS and ATF5 variants with pancreatitis	59
9	Association of ASNS and ATF5 variants with hypersensitivity	60
10	Association of ASNS and ATF5 variants with thrombosis	60
11	Association of patients' clinicopathological features with the dominant model of <i>ASNS</i> polymorphism	62
12	Association of patients' clinicopathological features with the dominant model of <i>ATF5</i> polymorphism	63