

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Value of Adding Nebulized Magnesium Sulphate to Rescue Medications in Acute Exacerbation of Chronic Obstructive Pulmonary Disease in Patients Admitted to Emergency Room

Thesis

Submitted For partial fulfilment of master degree in chest diseases

 $\mathcal{B}y$

Ahmad Mohamad Farag Shehata

(M.B.B. Ch)

Faculty of Medicine- Mansoura University

Prof. Dr. Tarek Mohamad Safwat

Professor of Chest Diseases Department Faculty of Medicine-Ain Shams University

Prof. Dr. Mohamad Ali El Sayed

professor of Chest Diseases Department Faculty of medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2022

فتعَالَى اللهُ الْحِلكُ الْحُقْ وَلَا تَعَجِلُ بِالْقُرْآنِ مِنْ قَبْلِ أَنْ يُقضَى إِلَيْكَ وَحْيُهُ وَقَلْ رَبّ زِرْنِي عِلْمًا سورة طه الآية ١١٤

First of all, all gratitude is due to *Allah* almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really, I can hardly find the words to express my gratitude to *Prof. Dr / Tarek Mohamad Safwat*, Professor of Chest Diseases Department, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to *Prof. Dr / Mohamad Ali Elsayed*, professor of Chest Diseases Department, Faculty of Medicine, Ain Shams University for his continuous directions and support throughout the whole work.

I can't forget to present a deep thanks to all patients who accept to participate on this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Ahmad Mohamad Farag Shehata

LIST OF CONTENTS

Items	
List of Tables	II
List of Figures	III
Introduction	1
Aim of The Work	4
Review of Literature	
Chapter (I): Chronic Obstructive Pulmonary Disease	5
Chapter (II): Magnesium Sulphate	
Patient &Methods	42
Results	46
Discussion	64
Summary	71
Conclusion	74
Recommendations	
References	76
الملخص العربي	91

LIST OF ABBREVIATIONS

AECOPD	Acute exacerbations of chronic obstructive pulmonary
AECOPD	disease
ASAH	Aneurysmal subarachnoid hemorrhage
ATP	Adenosine triphosphate
BMI	Body mass index
CC16	Club cell protein-16
CF	Cystic fibrosis
CNS	Central nervous system
COPD	Chronic obstructive pulmonary disease
COPDSS	Chronic obstructive pulmonary disease severity scale
CRP	C-reactive protein
DALYS	Disability-adjusted life years
EBC	Exhaled breath condensate
ED	Emergency department
FEV1	Forced expiratory volume in 1 st second
FVC	Forced vital capacity
IB	Ipratropium bromide
ICS	Inhalation corticosteroids
ICU	Intensive care unit
IL-8	Serum interleukin 8
LABA	Long-Acting Beta Agonist
LAMA	Long-acting muscarinic receptor antagonist
MG	Magnesium
NMDA	N-methyl-d-aspartate
PA	Pseudomonas aeruginosa
PAO2	Partial arterial oxygen pressure
PCR	polymerase chain reaction
PM	Particulate matter
PMN	Polymorphonuclear neutrophils
PPIS	Proton pump inhibitors
QOL	Quality of life
SABA	Short-acting inhaled B2 agonist
TBI	Traumatic brain injuries
TDP	Torsade de pointes
TNF-A	Tumor necrosis factor-alpha

LIST OF TABLES

Tables No.	Tables Name	Page		
		No.		
Tables in review				
Table (I)	Most common causes of exacerbations of COPD.	7		
Table (II)	Risk factor for failure and early relapse of AECOPD	12		
Table (III)	Classification of acute exacerbations of COPD according to Anthemises criteria	19		
Table (IV)	An overview of available long-acting bronchodilators.	20		
Table (V)	Relation between Mg plasma concentration and side effects.	28		
	Tables in results			
Table (1)	Sociodemographic data among the studied groups(N=100).	46		
Table (2)	Smoking and medical history among studied groups.	47		
Table (3)	Present history and vital signs among studied groups	49		
Table (4)	Pulmonary function among studied groups before treatment	50		
Table (5)	CBC and ABGs among studied groups before treatment	52		
Table (6)	Radiological finding among studied groups	54		
Table (7)	Pulmonary function among studied groups after treatment.	55		
Table (8)	ABGs among studied groups after treatment.	57		
Table (9)	Pulmonary function and ABGs before and after treatment in patients received salbutamol nebulizer	59		
Table (10)	Pulmonary function and ABGs before and after treatment in patients received Magnesium sulphate + salbutamol nebulizer.	61		
Table (11)	Clinical data of the studied groups after treatment.	63		

LIST OF FIGURES

Figures No.	Figures Name	Page No.			
	Figures in review				
Figure (I)	Chemical structure of Magnesium sulfate	25			
Figure (II)	Magnesium and vascular function	32			
Figures in results					
Figure (1)	Age among the studied groups.	46			
Figure (2)	medical history among studied groups.	48			
Figure (3)	Most of vital signs among studied groups	50			
Figure (4)	FEV1/FVC% among studied groups before treatment	51			
Figure (5)	FEV 1 and FVC among studied groups before treatment.	51			
Figure (6)	Platelets and HCT among studied groups before treatment	53			
Figure (7)	FEV1/FVC% among studied groups after treatment	55			
Figure (8)	FEV 1 and FVC among studied groups after treatment	56			
Figure (9)	PO2, O2 Saturation and Serum Mg among studied groups after treatment.	58			
Figure (10)	Pulmonary function before and after treatment in patients received salbutamol nebulizer	60			
Figure (11)	Pulmonary function before and after treatment in patients received Magnesium sulphate + salbutamol nebulizer.	62			
Figure (12)	Po2, O2saturation and Serum Mg before and after treatment in patients received Magnesium sulphate + salbutamol nebulizer	62			

INTRODUCTION

Chronic Obstructive Pulmonary Disease (COPD) is a common, preventable and treatable disease that is characterized by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles or gases. (GOLD, 2021)

Chronic Obstructive Pulmonary Disease (COPD) exacerbation is a sustained acute/subacute worsening of the severity or frequency of symptoms such as dyspnea, cough or sputum production, with increased quality of life impairment, lasting at least 3 days, which prompts the patient to seek medical attention or leads to a change in medication. (Guimaraes et al., 2016)

Chronic Obstructive Pulmonary Disease (COPD) exacerbations play a central role in the natural history of the disease, affecting its overall severity, decreasing pulmonary function, worsening underlying comorbidities, impairing quality of life (QoL) and leading to severe morbidity and mortality. (GOLD, 2021)

Chronic Obstructive Pulmonary Disease (COPD) is associated with evidence of systemic oxidative stress, activation of circulating inflammatory cells and increased plasma level of proinflammatory cytokines which include C-reactive protein. (**Murali et al., 2012**)

Spirometry is essential to assessing airflow obstruction and COPD diagnosis. The results of this measurement play a fundamental role in scales and classifications of the disease, making it essential to patient characterization. (**Lopez et al., 2013**)

A single exacerbation can lead to a significant rate of decrease in lung function in patients with moderate to severe COPD. (Jenny, 2012). Short-acting inhaled B2 agonists (SABAs) and short-acting muscarinic

antagonists (SAMAs) remain the mainstay in the treatment of symptoms and airflow obstruction during COPD exacerbations. (Qureshi et al., 2014)

A number of factors have been documented to be associated with severity and exacerbation of the disease, an important one being serum magnesium levels. Hypomagnesaemia is a common finding in acute exacerbation of COPD and is frequently encountered in patients who present late to the hospital. (Subhankar et al., 2018)

Magnesium has a key role in numerous physiological processes. Important underlying mechanisms of action of magnesium include calcium antagonism via calcium channels, regulation of energy transfer (such as the production and function of ATP) and membrane stabilization. (Herroeder et al., 2011)

In the airways, magnesium is a bronchodilator through various mechanisms including an inhibitory effect on bronchial smooth muscle contraction mediated by calcium and an inhibitory effect on acetylcholine release from cholinergic nerve terminals and histamine from mast cells. (Edwards et al., 2013)

Fewer studies have addressed the effects of magnesium in chronic obstructive pulmonary disease (COPD) even though asthma and COPD share some pathophysiological characteristics (such as bronchial hyperresponsiveness) as well as numerous therapies, particularly bronchodilator treatments. (**Nouira et al., 2012**)

Nebulized magnesium is attractive as a therapeutic option because it is easily administered, relatively cheap and has minimal side effects. In light of some evidence for an effect when nebulized in severe exacerbations of asthma, the similarities between asthma and chronic obstructive pulmonary disease (COPD) (especially with regard to bronchodilator therapy) and the practical advantages of administration via

nebuliser, we sought to focus on the nebulized route of delivery in acute exacerbations of chronic obstructive pulmonary disease (AECOPD). (Edwards et al., 2013)

AIM OF THE WORK

This work aims to evaluate the effect of administration of nebulized magnesium sulphate in the management of acute exacerbations of chronic obstructive pulmonary disease.

CHAPTER (I) COPD

CHAPTER (I)

Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is a disease which is characterized by airway inflammation and progressive airflow limitation with poor reversibility. Patients with COPD can experience periods of acute deterioration, which are called exacerbations. There are different definitions for an acute exacerbation of COPD (AECOPD). A symptom reported AECOPD is defined solely based on a patient's symptoms. This is regardless of whether the patient seeks medical attention or receives treatment for the exacerbation. An event defined AECOPD requires a therapeutic intervention such as a change in COPD medications or a change in healthcare utilization (Zinellu et al., 2021).

Generally accepted is the definition as "an event in the natural course of the disease characterized by a change in the patient's baseline dyspnoea, cough, and/or sputum that is beyond normal day-to-day variations, is acute in onset and may warrant a change in regular medication in a patient with COPD". Frequent exacerbations can result in a decreased health related quality of life, a decline in lung function, an increased risk of hospitalization and an increase in mortality. It is estimated that COPD is the 4th leading cause of death worldwide and will be the 3rd leading cause of death in 2030. Along with increasing mortality rates, the loss in disability-adjusted life years (DALYs) also rises (**Eapen et al., 2017**).