

Correlation between adiponectin level and the degree of fibrosis in patients with NAFLD

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By **Esraa Ebrahim Abdullah**

M.B.B.Ch. Ain Shams University.

Under supervision of

Prof. Dr. Tarek Mohammed Youssef

Professor of Internal Medicine Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University

Dr. Manal Sabry Mohamed

Assistant Professor of Internal Medicine Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University

Dr. Ahmed El-Metwally Ahmed

Lecturer of Internal Medicine Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Tarek Mohammed Youssef, Professor of Internal Medicine Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Manal Sabry Mohamed, Assistant Professor of Internal Medicine Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Ahmed El-Metwally Ahmed, Lecturer of Internal Medicine Gastroenterology and Hepatology Unit Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

Esraa Ebrahim Abdullah Khalifah

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	9
Introduction	1
Aim of the Work	4
Review of Literature	
Non-Alcoholic Fatty Liver Disease	5
Adiponectin	39
Patients and Methods	53
Results	61
Discussion	84
Conclusion	95
Recommendations	96
Summary	97
References	99
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Classification of secondary causes alcoholic fatty liver disease	
Table (2):	Steatosis activity fibrosis score	21
Table (3):	Grading of fibrosis in NAFLD according to Fibroscan measurement	
Table (4):	Demographic and anthropometric r of the studied cases	
Table (5):	Adiponectin level and degree of according to Fibroscan in all studies	
Table (6):	Comparison between overweight ar regarding Diabetic status and HTN.	
Table (7):	Comparison between overweight are cases regarding degree of liver fibroscan.	prosis by
Table (8):	Comparison between diabetic andiabetic patients regarding Obesity a	
Table (9):	Comparison between diabetic and diabetic patients regarding degree fibrosis by fibroscan	of liver
Table (10):	Comparison between low grade a grade fibrosis patients r demographic, anthropometric, clinical laboratory data.	egarding ical and
Table (11):	Adiponectin levels measured in our showed strong correlation to their coclinical features.	-existing

List of Tables cont...

Table No.		Title		Page No.
Table (12):	Comparison regarding fibr		adiponectin	
Table (13): I	Receiver Opera for adiponect	_	acteristic curve a predictor f	
	•			

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Evaluation of hepatic steatosis ultrasound	_
Figure (2):	Evaluation of hepatic steatosis unenhanced CT scan	
Figure (3):	Evaluation of hepatic steatosis using	g MRS19
Figure (4):	Structure of adiponectin	41
Figure (5):	The biological effects of adiponectin liver	
Figure (6):	The probe of the Fibroscan development positioned in an intercostal space not right lobe of the liver, and a 50-MHz is passed into the liver from a transducer on the end of the probe	ear the z wave small
Figure (7):	A graph showing the mean FBS lever mean platelets count in overweight obese patients.	vel and nt and
Figure (8):	A graph showing the mean values cholesterol, TG, LDL and HDL in overweight and obese groups	s of T. n both
Figure (9):	Correlation between overweight and groups regarding adiponectin level	l obese
Figure (10):	Percentage among overweight and patients in terms of grades of fibrosis.	obese liver
Figure (11):	Mean values of platelets count in diabeton-diabetic groups	etic and
Figure (12):	Mean values of albumin in diabet non diabetic groups.	
Figure (13):	A graph showing the mean values cholesterol, TG, LDL and HDL in diabetic and non-diabetic groups	n both

List of Figures cont...

Fig. No.	Title	Page No.
Figure (14):	A graph showing the mean val adiponectin in both diabetic and diabetic groups.	d non-
Figure (15):	Percentage among diabetic and diabetic patients in terms of graliver fibrosis	non- des of
Figure (16):	The percentage value hypertension grade and high grade fibrosis groups	
Figure (17):	The mean value platelets count grade and high grade fibrosis groups	
Figure (18):	The mean value of Albumin in low and high grade fibrosis groups	O
Figure (19):	A graph showing the mean values cholesterol, TG, LDL and HDL in lo high grade fibrosis groups	ow and
Figure (20):	Mean adiponectin level in low gradhigh grade fibrosis patients	de and
Figure (21):	Receiver Operating Characteristic (ROC) for adiponectin level as a pr for liver fibrosis.	edictor
	101 11, 01 1101 0010,	

List of Abbreviations

Abb. Full term	
2hPP 2 hours postprandial	
ACC Acetyl-CoA Carboxylase	
Adipo R1 Adiponectin receptor 1	
Adipo R2 Adiponectin receptor 2	
ALT Alanine Aminotranferase	
AMP Adinosine Mono-Phosphate	
AMPK Adenosine Monophosphate-activated P	rotein
Kinase	
APRI AST Platelet Ratio Index	
ASK-1 Apoptosis Signal-regulating Kinase-1	
AST Aspartate Aminotransferase	
ATP Adinosine Tri-Phosphate	
BMI Body Mass Index	
CBC Complete blood count	
CCL C-C chemokine Legand	
CCR C-C chemokine Receptor	
CPT-1 Carnitine Palmitoyl Transferase-1	
CTComputed Tomography	
CTGF Connective Tissue Growth Factor	
CVD Cardiovascular Diseases	
ER Endoplasmic Reticulum	
FBS Fasting blood sugar	
FFA Free Fatty Acids	
FIB-4 Fibrosis-4	
FL Fatty Liver	
FLI Fatty Liver index	
FXR Farnesoid X Receptor	
G-6-Pase Glucose-6-Phosphatase	
GGT Gamma Glutamyl Transferase	

List of Abbreviations cont...

Abb.	Full term
GGT	Gamma Glutamyl Transferase
	Glucagon-like peptide-1
	Highly Active Anti-Retroviral Therapy
	Glycosylated Hemoglobin
	Hepatitis B surface antigen
=	Hepatitis B virus
	Hepatocellular Carcinoma
HCV	Hepatitis C virus
HCV-Ab	Hepatitis C Virus antibody
HDL-C	high-density lipoprotein cholesterol
HMW	High Molecular Weight
HSC	Hepatic Stellate Cells
Hs-CRP	High-sensitivity C-Reactive Protein
HTN	Hypertension
IL	Interlukin
INR	International neutralization ration
IR	Insulin Resistance
IR	Insulin Resistance
JAK	Janus kinase
kb	Kilobases
	Kupffer Cells
kDa	Kilo Dalton
LMW	Low Molecular Weight
LOXL-2	Lysyl Oxidase Like-2
LT	Liver Transplantation
MCP-1	Monocyte Chemoattractant Protein-1
	matrix metalloproteinase-1
	Medium Molecular Weight
MPO	Myeloperoxidase

List of Abbreviations cont...

Abb.	Full term
MRE	Magnatic Resonance Elastography
	Magnatic Resonance Imaging
	Non-Alcoholic Fatty Liver Disease
	NAFLD activity score
	Non-Alcoholic Steato-Hepatitis
	NAFLD Fibrosis Score
NF-κB	Nuclear Factor-kappa B
OCA	Obeticholic acid
OSA	Obstructive Sleep Apnea
PAI-1	Plasminogen Activator Inhibitor-1
PCO	Polycystic Ovarian disease
PDGF	Platelet Derived Growth Factor ()
PEPCK	Phosphoenolpyruvate Carboxykinase
PPAR-α	Peroxisome Proliferator Activated Receptor
DTD1D	alpha Dratain Tyrosina Phambatasa 1P
	Protein Tyrosine Phosphatase 1B Retinol Binding Protein-4
	Reactive Oxygen Species
	Steatosis Activity Fibrosis score
SEL	· ·
	Cytokine Signaling-3
	Sterol Regulatory Element Binding Protein-1c
	signal transducer and activator of
01111	transcription
T2DM	Type 2 Diabetes Mellitus
TE	Transient Elastography
TG	Triglycerides
TGF	Tumor Growth Factor
TGF-β1	Transforming Growth Factor-beta 1

List of Abbreviations cont...

Abb.	Full term	
ΤΙΜ . 1	tissue inhibitor of metalloproteinases-1	
TNF	Tumor Necrosis Factor	
tPAI-1	Total Plasminogen Activator Inhibitor-1	
TZDs	Thiazolidinediones	
US	Ultrasonography	
USE	Ultrasound Elastography	
VDR	Vitamin D Receptor	
VLDL	Very Low Density Lipo-protien	
VLDL	very-low-density lipoprotein	
WC	Waist Circumference	
α-SMA	Alpha Smooth Muscle Actin	

ABSTRACT

Background: Non-alcoholic Fatty Liver Disease (NAFLD) is one of the most prevalent chronic liver diseases particularly in Egypt. It is defined as accumulation of lipids inside the hepatocytes, in absence of other etiologies of hepatic damage. It is frequently associated with obesity, diabetes mellitus and metabolic syndrome.

Objective: To find out the correlation between the degree of liver fibrosis in Non-alcoholic Fatty Liver Disease patients and their serum Adiponectin level as a future non-invasive method for assessment of liver fibrosis to substitute liver biopsy to avoid its hazardous complication. Also to study the correlation between diabetes mellitus as well as obesity and serum Adiponetctin level.

Patients and Methods: 50 patients were selected to participate in our study based on our inclusion criteria. They were recruited from the Internal Medicine department, Gastro-intestinal clinic in Al-Demerdash Hospital using a convenient sampling method. Diagnoses of NAFLD (Non-alcoholic fatty liver disease) was confirmed by laboratory markers (AST, ALT, Lipid profile), ultrasound as well as fibroscan examination.

Results: Analyzing adiponectin levels showed that -besides its significant correlation with BMI, hypertension, diabetes mellitus and dyslipidemia- it was significantly lower in high grade fibrosis group compared to low grade fibrosis group with P-value of (0.000) and a cutoff value for stage 3/4 fibrosis of about 2.31µg/ml which marked a promising hope of adeponictin being of protective value against liver fibrosis. However, more studies performed on populations of different sizes and characteristics are recommended to allow more accurate generalization of the results and hopefully exploring a new horizon for the follow up and treatment of patients with chronic liver disease especially NAFLD.

Conclusion: Adiponectin is an abundant adipocyte-derived protein with well-established anti-atherogenic, insulin-sensitizing and anti-inflammatory properties. The liver is a major target organ for adiponectin especially in fatty liver diseases and this adipocytokine has the ability to control many liver functions including metabolism, inflammation and fibrosis. Both serum levels and hepatic adiponectin receptor expression are decreased in NAFLD. Therefore, either adiponectin itself or adiponectin-inducing agents might be of key therapeutic interest in the near future in the treatment of NAFLD.

Keywords: Nonalcoholic fatty liver disease, hepatic stellate cells, adenosine monophosphate-activated protein kinase

Introduction

(NAFLD) represents a spectrum of disorders characterized by macrovescicular hepatic steatosis occurring in individuals without a relevant alcohol consumption. It is a complex metabolic condition in which both lifestyle and genetic factors have a pathogenic role and has been increasingly recognized as a major cause of liverrelated morbidity and mortality (Satapathy and Sanyal, 2015).

Moreover, NAFLD has been convincingly associated with the metabolic insulin-resistance syndrome; most patients are overweight or frankly obese, with altered glucose regulation, dyslipidemia, and raised blood pressure, all contributing to the disorder (Lucero et al., 2017).

Insulin resistance, through the inhibition of lipid oxidation and increased fatty acid and triglycerides synthesis, is believed to be a key factor in the development of fatty liver. Moreover, insulin resistance states, such as obesity and diabetes, are also characterized by elevated expression and production of several cytokines; of particular interest are cytokines produced by adipose tissue, the so-called adipokines (adiponectin, leptin, resistin), NFα, TGFβ and PAI-1. Their role in the development of diabetes and other obesity complication has been suggested (Zhao et al., 2014).

1

Adiponectin, a 28 kDa protein adipocytokine, is mainly produced and secreted into the circulation by white adipose tissue. The primary function of adiponectin is the regulation of carbohydrate and lipid metabolism. However, the full extent of its biological action remains to be elucidated, with a variety of effects on different cell and tissue types, including its immune modulatory, anti-inflammatory, and anti-fibrotic properties (Udomsinprasert et al., 2018).

Regarding its protective effects, adiponectin regulates hepatic stellate cells (HSCs) proliferation, as well as migration, and induces their apoptosis through the activation of adenosine monophosphate-activated protein kinase (AMPK). Moreover, adiponectin can attenuate HSC activation and suppress the expression of pro-fibrogenic genes, including collagen I, transforming growth factor-beta 1 (TGF-β1), and alpha-smooth muscle actin (α-SMA), leading to the inhibition of liver fibrogenesis. With such potent effects on HSCs against liver fibrosis, adiponectin may be developed as a novel therapeutic agent in liver fibrosis. As it can be detected in the circulation and exerts its effects on various cells, it may have prognostic and diagnostic value for several human diseases. Interestingly, hypo-adiponectinemia has been documented prevalent in patients with NAFLD and liver fibrosis, thereby establishing the possible influence of adiponectin levels in the development and progression of liver fibrosis (Zhang et al., 2019).