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Abstract

Ayman Wagih Mohsen Ahmed Mohamed
A Quantum Attack-Immune Public Key Cipher

Master's in Electrical Engineering, Computers and Systems
Ain Shams University 2019

_______________________________________________________________________

In this work we discuss the history of lattice-based cryptography, study
the  recently  developed  lattice-based  cryptosystems,  and  compare  the
performance of  the HewHope,  Kyber,  Saber and Round5 CPA public  key
cryptosystems  and  CCA  key  encapsulation  mechanisms.  These
cryptosystems are among the candidates of the second round of the NIST
post-quantum cryptography standardization competition. We concentrate on
the performance of these cryptosystems. And the main factors affecting the
performace are: polynomial multiplication and random buffer generation. 

There are several methods to perform polynomial multiplication such
as Karatsuba, Toom-Cook, index-based and NTT methods. The NTT method
is the fastest, but it limits the choice of the cryptosystem parameters.

Random buffer generation can be sped up by using AES128 in counter
mode or any fast stream cipher instead of the SHA3 function shake128. High
performance can be achieved on modern processors by using the new AES
instructions AES-NI.

We also profile  the Kyber CPA cryptosystem to show the impact  of
random  buffer  generation  using  extendable  output  functions  on  the
performance of such cryptosystems. We make all our code available at http://
github.com/a1024/pqc.

Keywords:
Post-quantum, lattice-based crypto,  asymmetric  crypto,  key encapsulation
mechanisms
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Summary

A Quantum Attack-Immune Public Key Cipher

Ayman Wagih Mohsen Ahmed Mohamed

Masters of Science in Electrical Engineering (Computers and Systems
Engineering)

Keywords -- Post-quantum,  lattice-based crypto,  asymmetric  crypto,  key
encapsulation mechanisms

In chapter 1 we present the general idea of the field of lattice-based
cryptography  and  the  motivation  behind  this  work.  Followed  by  the
preliminaries explaining the notations used in the literature of lattice-based
cryptography. Then some of the lattice-based problems are explained.

Chapter 2 discusses various examples of lattice-based cryptosystems.
Beginning  with  the  old  lattice-based  cryptosystems  that  are  now
depreciated. Then we discuss the cryptosystems based on the learning with
errors (LWE) problem. Then the ring-LWE cryptosystem, and the underlying
problem: learning with errors over polynomial rings. Then we discuss the
modern  ring-LWE  based  key  encapsulation  mechanisms  (KEMs)  that
appeared in 2012 and afterwards. Leading to the newest KEMs NewHope,
Kyber, Saber, and Round5.

In chapters 3 we discuss the underlying operations such as polynomial
multiplication and modular reduction methods,  and other implementation
details.

In chapter 4 we present our implementations of various functions for
lattice-based  cryptography  including  the  NTT  polynomial  multiplication
method.

In chapter 5 we present and compare the results of benchmarking of
different cryptosystems on different SIMD architectures.  We also profiled
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the Kyber cryptosystem as an example to show what operations have the
major effect on performance.  Then we present other methods for random
buffer  generation  and  compare  them  for  speed.  These  methods  include:
SHA3 functions, AES128 in counter mode, and some of the fastest stream
ciphers  available  as  of  time  of  writing.  Then  we  present  the  results  of
randomness tests applied for these methods of random buffer generation.

In chapter 6 we make conclusions and discuss future work.

Thesis supervisors:

Prof. Dr. Ayman Bahaa El-Din

Dr. Mohamed Ali Sobh
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