

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Ain Shams University
Faculty of Engineering
Computers and Systems Department

A Quantum Attack-Immune Public Key Cipher

by

Ayman Wagih Mohsen Ahmed Mohamed
Bachelor Degree in Computers and Systems Engineering
Ain Shams University 2014

A THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF (MASTERS OF ELECTRICAL ENGINEERING, COMPUTERS AND SYSTEMS)

DEPARTMENT OF (COMPUTERS AND SYSTEMS)

Supervised by:

Prof. Dr. Ayman Mohamed Bahaa Eldin Dr. Mohamed Ali Ali Sobh

> Cairo, Egypt December 2019

Faculty of Engineering Ain Shams University Computers and Systems

Examiners Committee

Name : Ayman Wagih Mohsen Ahmed Mohamed

Thesis : A Quantum Attack-Immune Public Key Cipher

Degree : Master's of Computer Engineering - Computers and

Systems

Name, Title, and Affiliate	Signature
Prof. Dr. Amr Galal El-Din Ahmed Wassal Professor of Computer Engineering, Cairo University	
Prof. Dr. Mohamed Ali Kamel Watheq El Kharashi Professor of Computer Engineering, Ain Shams Univer	rsity
Prof. Dr. Ayman Mohamed Bahaa Eldin Sadek Professor of Computer Engineering, Ain Shams Univer	rsity
Dr. Mohamed Ali Ali Mustafa Sobh Professor of Computer Engineering, Ain Shams Univer	sity

Date: 2019-12-14

Abstract

Ayman Wagih Mohsen Ahmed Mohamed A Quantum Attack-Immune Public Key Cipher Master's in Electrical Engineering, Computers and Systems Ain Shams University 2019

In this work we discuss the history of lattice-based cryptography, study the recently developed lattice-based cryptosystems, and compare the performance of the HewHope, Kyber, Saber and Round5 CPA public key cryptosystems and CCA key encapsulation mechanisms. These cryptosystems are among the candidates of the second round of the NIST post-quantum cryptography standardization competition. We concentrate on the performance of these cryptosystems. And the main factors affecting the performace are: polynomial multiplication and random buffer generation.

There are several methods to perform polynomial multiplication such as Karatsuba, Toom-Cook, index-based and NTT methods. The NTT method is the fastest, but it limits the choice of the cryptosystem parameters.

Random buffer generation can be sped up by using AES128 in counter mode or any fast stream cipher instead of the SHA3 function shake128. High performance can be achieved on modern processors by using the new AES instructions AES-NI.

We also profile the Kyber CPA cryptosystem to show the impact of random buffer generation using extendable output functions on the performance of such cryptosystems. We make all our code available at http://github.com/a1024/pgc.

Keywords:

Post-quantum, lattice-based crypto, asymmetric crypto, key encapsulation mechanisms

Summary

A Quantum Attack-Immune Public Key Cipher

Ayman Wagih Mohsen Ahmed Mohamed

Masters of Science in Electrical Engineering (Computers and Systems Engineering)

Keywords -- Post-quantum, lattice-based crypto, asymmetric crypto, key encapsulation mechanisms

In chapter 1 we present the general idea of the field of lattice-based cryptography and the motivation behind this work. Followed by the preliminaries explaining the notations used in the literature of lattice-based cryptography. Then some of the lattice-based problems are explained.

Chapter 2 discusses various examples of lattice-based cryptosystems. Beginning with the old lattice-based cryptosystems that are now depreciated. Then we discuss the cryptosystems based on the learning with errors (LWE) problem. Then the ring-LWE cryptosystem, and the underlying problem: learning with errors over polynomial rings. Then we discuss the modern ring-LWE based key encapsulation mechanisms (KEMs) that appeared in 2012 and afterwards. Leading to the newest KEMs NewHope, Kyber, Saber, and Round5.

In chapters 3 we discuss the underlying operations such as polynomial multiplication and modular reduction methods, and other implementation details.

In chapter 4 we present our implementations of various functions for lattice-based cryptography including the NTT polynomial multiplication method.

In chapter 5 we present and compare the results of benchmarking of different cryptosystems on different SIMD architectures. We also profiled the Kyber cryptosystem as an example to show what operations have the major effect on performance. Then we present other methods for random buffer generation and compare them for speed. These methods include: SHA3 functions, AES128 in counter mode, and some of the fastest stream ciphers available as of time of writing. Then we present the results of randomness tests applied for these methods of random buffer generation.

In chapter 6 we make conclusions and discuss future work.

Thesis supervisors:

Prof. Dr. Ayman Bahaa El-Din

Dr. Mohamed Ali Sobh

Acknowledgements

I would like to thank God for His blessings and that I'm able to finish this thesis.

Also I'd like to thank mom and dad for their continuous encouragement.

I also would like to thank my supervisors Dr Ayman Bahaa and Dr Mohamed Sobh for their advice, guidance and inspiration.

Statement

This dissertation is submitted to Ain Shams University for the degree of Master's in Electrical Engineering in Computers and Systems department.

The work included in this thesis was out by the author at Computers and Systems Department, Ain Shams University.

No part of this thesis has been submitted for a degree of qualification at other university or institution.

Date : 2019-12-14

Signature:

Name : Ayman Wagih Mohsen Ahmed Mohamed

Table of Contents

Abstract	3
Summary	4
Acknowledgements	
Table of Contents	8
List of Figures	10
List of Tables	12
1. Introduction	13
1.1. Preliminaries	15
1.2. Lattices and lattice-based problems	16
1.3. Outline	18
2. Background on Lattice-based public key cryptosystems (PKCs)	20
2.1. Early works	20
2.1.1. The Ajtai cryptosystem	20
2.1.2. The GGH cryptosystem	21
2.2. LWE based cryptosystems	22
2.2.1. NTRU cryptosystem	22
2.2.2. Regev 2005 LWE cryptosystem	22
2.2.3. Micciancio-Regev 2008 cryptosystem	24
2.2.4. Linder-Peikert 2011 (LP11) cryptosystem	25
2.2.5. Compact-LWE	27
2.3. Ring-LWE based cryptosystems	28
2.3.1. LPR10 Ring-LWE cryptosystem:	28
2.4. Modern Key Encapsulation Mechanisms (KEMs)	31
2.4.1. Ding12 KEM	31
2.4.2. Peikert's modification to Ding's KEM in 2014 / BCNS15 KEM	33
2.4.3. NewHope [ADPS16] KEM	35
2.4.4. Kyber KEM and PKC	38
2.4.5. Saber KEM and PKC	40
2.4.6. Round5 KEM and PKC	43
3. Implementation Details	44
3.1. Polynomial Multiplication	
3.2. Number Theoretic Transform (NTT)	47

3.3. The Cooley-Tukey FFT Algorithm	49
3.4. Single Instruction Multiple Data (SIMD)	52
3.5. Other methods for polynomial multiplication: Karatsuba method	53
3.6. Other methods for polynomial multiplication: Toom-Cook Method	54
3.7. Modular Reduction	55
Barrett reduction	56
Montgomery reduction	58
4. Proposed library for the NTT and other algorithms	60
4.1. Proposed function for schoolbook multiplication using SSE2	65
4.2. Advice for fast deterministic random bitstring generation	67
4.3. Proposed library for extendable output function using AES-128	67
4.4. Other proposed functions	70
5. Benchmarks and tests	72
5.1. Polynomial multiplication	72
5.2. Benchmarks of modern lattice-based public key cryptosystems and	
key encapsulation mechanisms	75
5.3. Profiling of the NewHope, Kyber, Saber, and Round5 cryptosystems	s 78
5.4. Randomness tests	92
6. Conclusion and future work	97
6.1. Future work	97
References	
شکر شکر	
الملخص	104
مستخلص	105

List of Figures

Figure 1: Lattice problem notations	18
Figure 2: Ding12 Hint function $S(K)$	32
Figure 3: Peikert14 / BCNS functions	34
Figure 4: D4 lattice described by basis B in 2 dimensions and 3 dime	nsions
	36
Figure 5: Polynomial multiplication using discrete Fourier transform	(DFT).
	47
Figure 6: DFT matrices of size n=4	48
Figure 7: NTT matrices of size n=4 with modulus q=5	48
Figure 8: NTT matrices of size n=4 with modulus q=17	49
Figure 9: FFT stage matrices for size n=4	50
Figure 10: The FFT stages form the bit-reverse permuted DFT matrix.	50
Figure 11: Bit-reverse permutation of size n=4	51
Figure 12: Decimation-in-frequency (DIF) FFT stage matrices for siz	e n=4.
	51
Figure 13: Performance results of multiplication of polynomials with	h 1024
coefficients, in thousand CPU cycles (average time)	74
Figure 14: Performance results of multiplication of polynomials with	h 1024
coefficients, without the naive method, in thousand CPU cycles (a	verage
time)	74
Figure 15: Performance results of our implementation of NewHope,	Kyber
and Saber CPA PKCs, minimum time in million CPU cycles. (-A) inc	dicates
AES-NI	76
Error: Reference source not foundError: Reference source not found	
Error:	
Reference source not found	
Figure 17: Performance results of CCA KEMs on Core i7 4770K Hasw	rell (1),
and i7 6600U Skylake (2). These results are from [16] and [17].	77
Figure 18: Performance results on Cortex-M4 from [21].	78
Figure 19: Time for deterministic random buffer generation	79
Figure 20: Output cycles per byte (CPB) of different methods for gene	eration
of deterministic pseudo-random buffer	7 9

Figure 24: Profile of the Kyber CPA cryptosystem in thousand CPU	cycles.
Using AVX2, and libkeccak-tiny	83
Figure 25: Profile of the Kyber CPA cryptosystem in thousand CPU	cycles.
Using AVX2, and AES in counter mode, with AES-NI instructions	84
Figure 26: Profile of the Kyber CPA cryptosystem in thousand CPU	cycles.
Using AVX2, and libkeccak-tiny (blue) vs AES-NI (red)	85
Figure 27: Profile of the Saber CPA cryptosystem in thousand CPU	cycles.
Using SSE2, and libkeccak-tiny	86
Figure 28: Profile of the Saber CPA cryptosystem in thousand CPU	cycles.
Using SSE2, and AES in counter mode, with AES-NI instructions	
Figure 29: Profile of the Saber CPA cryptosystem in thousand CPU	cycles.
Using SSE2, and libkeccak-tiny (blue) vs AES-NI (red)	88
Figure 30: Profile of the Round5 CPA cryptosystem in thousand CPU	cycles.
Using AVX2, and libkeccak-tiny	89
Figure 31: Profile of the Round5 CPA cryptosystem in thousand CPU	cycles.
Using AVX2, and AES in counter mode, with AES-NI instructions	
00	
Figure 32: Profile of the Round5 CPA cryptosystem in thousand CPU	cycles.
	cycles. 91

List of Tables

Table 1: Examples for algebraically acceptable sizes n and modulus	q for
NTT polynomial multiplication	53
Table 2: Benchmark results of polynomial multiplication	73
Table 3: Randomness evaluation of the ISAAC cryptographically-sec	ure
pseudo-random number generator (CSPRNG)	92
Table 4: Randomness evaluation of the Rabbit stream cipher	92
Table 5: Randomness evaluation of the HC-128 stream cipher.	93
Table 6: Randomness evaluation of the ChaCha20 stream cipher	94
Table 7: Randomness evaluation of the AES-128 block cipher in cour	ıter
(CTR) mode	94
Table 8: Randomness evaluation of the Keccak hash function. Name	ly, the
Shake128 extendable output function (XOF)	95