

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

IMPACT OF SPRAYING WASHINGTON NAVEL ORANGE TREES WITH COBALT, SELENIUM AND SILICON SALTS ON VEGETATIVE GROWTH, PRODUCTIVITY AND FRUIT QUALITY

By

BASEM MOHAMED MOHAMED BAKR

B.Sc. Agric. Sc. (Pomology), Fac. of Agric., Cairo Univ., 2001 M.Sc. Agric. Sc. (Horticulture), Fac. of Agric., Ain Shams Univ., 2009

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in Agricultural Sciences (Pomology)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

IMPACT OF SPRAYING WASHINGTON NAVEL ORANGE TREES WITH COBALT, SELENIUM AND SILICON SALTS ON VEGETATIVE GROWTH, PRODUCTIVITY AND FRUIT QUALITY

By

BASEM MOHAMED MOHAMED BAKR

B.Sc. Agric. Sc. (Pomology), Fac. of Agric., Cairo Univ., 2001 M.Sc. Agric. Sc. (Horticulture), Fac. of Agric., Ain Shams Univ., 2009

This thesis for Ph.D. degree has been approved by:

Dr. Mohamed Hamed Edris

Prof. Emeritus of Pomology, Faculty of Agriculture, Al-Azhar University.

Dr. Ibrahim Shawky El-Sayed

Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams University.

Dr. Noha Ahmed Ibrahim Mansour

Associate Prof. of Pomology, Faculty of Agriculture, Ain Shams University.

Dr. Ahmed Abd Al-Fattah El-Gazzar

Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams University

Date of Examination: / 2019

IMPACT OF SPRAYING WASHINGTON NAVEL ORANGE TREES WITH COBALT, SELENIUM AND SILICON SALTS ON VEGETATIVE GROWTH, PRODUCTIVITY AND FRUIT QUALITY

By

BASEM MOHAMED MOHAMED BAKR

B.Sc. Agric. Sc. (Pomology), Fac. of Agric., Cairo Univ., 2001 M.Sc. Agric. Sc. (Horticulture), Fac. of Agric., Ain Shams Univ., 2009

ABSTRACT

Basem Mohamed Mohamed: Impact of Spraying Washington Navel Orange Trees with Cobalt, Selenium and Silicon Salts on Vegetative Growth, Productivity and Fruit Quality. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2020.

A study was carried out during two successive seasons, 2012 and 2013 on 7 years old Washington Navel Orange trees (*Citrus sinensis*) budded on sour orange rootstock (*Citrus aurantium*, *L*.) and planted at 5 x 5 meters under basin irrigation system. The trees are grown in a private orchard located at El-Kalubia Governorate Egypt. The study involved three experiments as follows:

The first experiment: Impact of spraying cobalt sulphate on vegetative growth, fruit set%, fruit drop%, productivity, fruit quality, leaf mineral concentrations and enzymes activity of Navel orange trees.

This experiment inculded five levels of cobalt (0, 5,10,20 and 40 ppm) as cobalt sulphate (CoSO₄). Selected trees were sprayed twice in each season (the first week of each Mar. and Sept.). The experiment was arranged in a randomized complete block design with four replicates. Results indicated that 20 ppm Co gave the highest values of yield/tree, fruit weight, total soluble solids, leaf N, P, K, Ca, Mg, Zn, Mn and Co content as compared to the control treatment which gained the lowest values.

The second experiment: Impact of spraying sodium selenite on vegetative growth, fruit set%, fruit drop%, productivity, fruit quality, leaf mineral concentrations and enzymes activity of Navel orange trees.

This experient inculded five levels of selenuim (0, 20,40,80 and 160 ppm) as sodium selenite (20% Se) (Na₂SeO₃, 5H₂O). Selected

trees were sprayed twice in each season (the first week of each Mar. and Sept.). The experiment was arranged in a randomized complete block design with four replicates. Results indicated that 40 ppm selenium gave the highest values of yield/tree, fruit weight, total soluble solids, leaf N, K, Ca, Mg, Fe, Zn, Mn and Se content as compared to the control treatment which gained the lowest values.

The third experiment: Impact of spraying silicon on vegetative growth, fruit set%, fruit drop%, productivity, fruit quality, leaf mineral concentrations and enzymes activity of Navel orange trees.

This experment inculded five levels of silicon (0, 25,50,100 and 200 ppm) as silicon (Si). Selected trees were sprayed twice in each season (the first week of each Mar. and Sept.). The experiment was arranged in a randomized complete block design with four replicates. Results indicated that 50 ppm silicon gave the highest values of yield/tree, fruit weight, total soluble solids, leaf N, P, K, Ca, Mg, Fe, Zn, Mn and Si content as compared to the control treatment which gained the lowest values.

Key words: Navel orange, Cobalt, Selenium, Silicon, Fruit quality, Leaf mineral content, Fruit mineral content.

ACKNOWLEDGMENT

Praise and thank be to "**ALLAH**" the most merciful for assisting and directing me to the right way.

I wish to express my sincere thanks and gratitude to **Prof. Dr. Ahmed El Gazzar** Prof. Emeritus of Pomology, Faculty. of Agric. Ain Shams University for his supervision, valuable advice, kind encouragement, constructive criticism, expert guidance, stimulating suggestions.

Deep thanks and great gratitude to **Dr. Noha Mansour** Associate Professor of Pomology, Faculty. of Agric. Ain Shams University for her kind help, continuous encouragement and supervision during the preparation of this work.

I am deeply grateful to **Prof. Dr. Mohamed Ehab** Researcher Professor of Pomology, National Research Center for his supervision, great support, guidance, and preparing this manuscript.

Deep thanks and great gratitude to **Dr.Nabil Sabet** Researcher Associate Professor of Pomology, National Research Center for his supervision and great support.

I am deeply grateful to **Dr. Emad El Din Ali** Researcher Associate Professor of Pomology, National Research Center for his supervision, and preparing this manuscript.

DEDICATION

I dedicate this work to whom my heartfelt thanks; to **Dr. Mamdouh Mohamed Nageib**, Prof. Emeritus of Pomology, National Research Center for kind help and encouragement.

CONTENTS

	Page
LIST OF TABLES	VI
LIST OF FIGURES	IX
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. The active role of cobalt in plant life	3
2.2. The active role of selenium in plant life	5
2.3. The active role of silicon in plant life	11
3. MATERIALS AND METHODS	17
4. RESULTS	23
4.1. The first experiment: Impact of spraying cobalt sulphate	
on vegetative growth, fruit set%, fruit drop%, productivity,	
fruit quality, leaf mineral concentrations and enzymes	
activity of Navel orange trees.	23
4.1.1. Vegetative growth:	23
4.1.1.1. Number of shoots/ branch	23
4.1.1.2. Shoot length	23
4.1.1.3. Number of leaves/ shoot	23
4.1.1.4. Leaf area	24
4.1.2. Fruit set percentage	30
4.1.3. Fruit drop percentage	30
4.1.4. Yield/tree	35
4.1.5. Fruit quality	40
4.1.5.1. Fruit physical characteristics	40
4.1.5.1.1. Fruit volume	40
4.1.5.1.2. Fruit height	40
4.1.5.1.3. Fruit diameter	40
4.1.5.1.4. Peel thickness	40
4.1.4.1.5. Pulp weight	41
4.1.5.1.6 Pulp percentage	41
4.1.5. 2. Fruit chemical characteristics	45

	Page
4.1.5.2.1. Total soluble solids percentage	49
4.1.5.2.2. Total acidity percentage	49
4.1.5.2.3. TSS/acid ratio	49
4.1.5.2. Ascorbic acid	49
4.1.6. Leaf mineral concentrations:	55
4.1.6.1. Leaf nitrogen percentage	55
4.1.6.2. Leaf phosphorus percentage	55
4.1.6.3. Leaf potassium percentage	55
4.1.6.4. Leaf calcium percentage	55
4.1.6.5. Leaf magnesium percentage	56
4.1.6.6. Leaf iron concentration	56
4.1.6.7. Leaf zinc concentration	56
4.1.6.8. Leaf manganese concentration	56
4.1.6.9. Leaf cobalt concentration	56
4.1.7. Cobalt in fruit pulp	68
4.1.8. Enzymes activity in fruit pedicels	70
4.1.8.1. Pectinase activity	70
4.1.8.2. Cellulase activity	70
4.2. The second experiment: Impact of spraying sodium selenite	
on vegetative growth, fruit set%, fruit drop%, productivity, fruit	
quality, leaf mineral concentrations and enzymes activity of Navel	
orange trees.	73
4.2.1. Vegetative growt	73
4.2.1.1. Number of shoots/ branch	73
4.2.1.2. Shoot length	73
4.2.1.3. Number of leaves/ shoot	73
4.2.1.4. Leaf area	73
4.2.2. Fruit set percentage	79
4.2.3. Fruit drop percentage	79
4.2.4. Yield/tree	84
4.2.5. Fruit quality	89

	Page
4.2.5.1. Fruit physical characteristics	89
4.2.5.1.1. Fruit volume	89
4.2.5.1.2. Fruit height	89
4.2.5.1.3. Fruit diameter	89
4.2.5.1.4. Peel thickness	89
4.2.5.1.5. Pulp weight	89
4.2.5.1.6 Pulp percentage	89
4.2.5. 2. Fruit chemical characteristics	97
4.2.5.2.1. Total soluble solids percentage	97
4.2.5.2.2. Total acidity percentage	97
4.2.5.2.3. TSS/acid ratio	97
4.2.5.2.4. Ascorbic acid	97
4.2.6. Leaf mineral concentrations	103
4.2.6.1. Leaf nitrogen percentage	103
4.2.6.2. Leaf phosphorus percentage	103
4.2.6.3. Leaf potassium percentage	103
4.2.6.4. Leaf calcium percentage	103
4.2.6.5. Leaf magnesium percentage	103
4.2.6.6. Leaf iron concentration	104
4.2.6.7. Leaf zinc concentration	104
4.2.6.8. Leaf manganese concentration	104
4.2.6.9. Leaf selenium concentration	104
4.2.7. Selenium in fruit pulp	115
4.2.8. Enzymes activity in fruit pedicels.	117
4.2.8.1. Pectinase activity	117
4.2.8.2. Cellulase activity	117
4.3. The third experiment: Impact of spraying silicon on	
vegetative growth, fruit set%, fruit drop%, productivity, fruit	
quality, leaf mineral concentrations and enzymes activity of	
Navel orange trees.	121
4.3. 1. Vegetative growth:	121