

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ionizing Radiation Hazards among Radiology Health Team

Thesis

Submitted for Partial Fulfillment of Master Degree in Nursing Sciences (Community Health Nursing)

Βγ Esraa Fathi Hussein

B.Sc. Nursing (2012)

Faculty of Nursing-Beni-Suef University

Head Nurse in Fayoum University Hospital

Faculty of Nursing
Ain Shams University
2021

Ionizing Radiation Hazards among Radiology Health Team

Thesis

Submitted for Partial Fulfillment of Master Degree in Nursing Sciences (Community Health Nursing)

Supervisors

Prof. Hanaa Abd Elhakiem Ahmed

Professor and Head of Community Health Nursing Department Faculty of Nursing - Ain Shams University

Dr. Wafaa Khalil Ibrahim

Assistant Professor of Community Health Nursing Faculty of Nursing - Ain Shams University

Faculty of Nursing
Ain Shams University
2021

First, all praises to **Allah**, the most gracious, the most merciful and blessing and peace to his messenger.

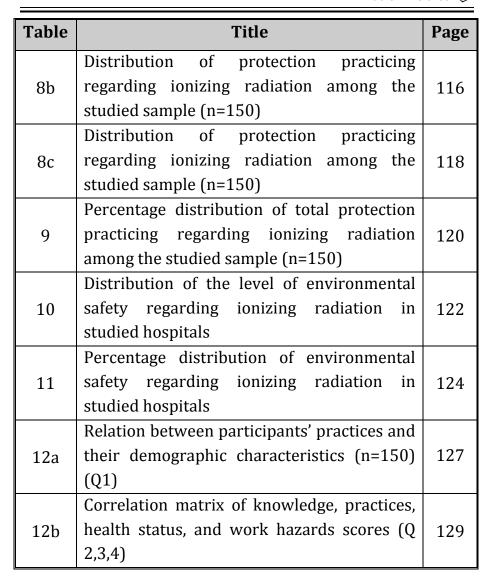
My words fail to express my sincere thanks and deepest gratitude to **Prof. Dr. Hanaa Abd Elhakiem Ahmed,**Professor and Head of Community Health Nursing Department,
Faculty of Nursing - Ain Shams University, for her patience and valuable scientific guidance and support through this work.

I am also, greatly honored to express my highest appreciation and gratitude to **Prof. Dr. Wafaa Khalil Ibrahim**, Assistant Professor of Community Health Nursing, Faculty of Nursing – Ain Shams University, for her professional co-operation, meticulous supervision, constructive encouragement, valuable support and instructions generous support and encouragement in every step in this work.

Additionally, I would like to thank the Radiology Health Team who participate in the study for their contribution and cooperation.

Lastly, but not least, I am thankful to all who directly or indirectly help me to accomplish this work.

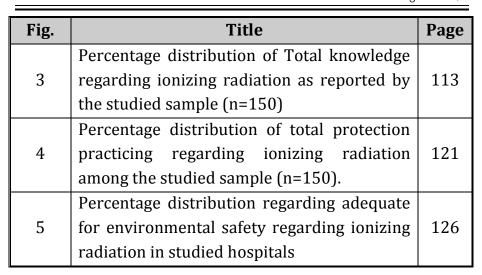
🖎 Esraa Fathi Hussein


Table of Contents

Title	Page
Introduction	1
Aim of the Study	
Review of Literature	9
Part I: Ionizing radiation Hazards	10
Part II: Heath Practices of Radiology Health Team	55
and Environmental Safety Regarding Ionizing	
Radiation	
Part III: Occupational Health Nurse Role in	71
Radiology Workplace According to Level of	
Prevention	
Subject and Methods	86
Results	98
Discussion	130
Conclusion	155
Recommendations	156
Summary	157
References	166
Appendices	214
Arabic Summary	

List of Tables

Table	Title	Page
1	Distribution of demographic characteristics of the studied sample of radiology health team (n=150)	99
2	Distribution of radiation protection training of the studied sample related to work (n=150)	101
3	Distribution of exposure to hazards at work as reported by the studied sample (n=150)	102
4a	Distribution of physical hazards at work as reported by the studied sample (n=150)	104
4b	Distribution of exposure to physical hazards at work as reported by the studied sample (n=150)	106
5a	Distribution of health problems as reported by the studied sample (n=150)	108
5b	Distribution of health problems as reported by the studied sample (n=150)	109
5c	Distribution of health status as reported by the studied sample (n=150)	110
6	Distribution of Knowledge regarding ionizing radiation among the studied sample (n=150)	111
7	Distribution of Knowledge regarding Protection methods from ionizing radiation among the studied sample (n=150)	112
8a	Distribution of protection practicing regarding ionizing radiation among the studied sample (n=150)	114


List of Tables \(\bigsigma

List of Figures

Fig.	Title	Page
	Figures in Review	
1	Electromagnetic spectrum.	11
2	Illustration of different types of ionizing	15
	radiation and energies	13
3	Penetrating power of radiation	16
4	Cell damage can be caused by direct or	19
	indirect ionization	17
5	Deterministic Effects and Stochastic Effects	23
6	Picture (A) shows the lead protective	
	devices, which were a lead mask, thyroid	
	shield, apron and hand shield. Picture (B)	62
	shows the locations where the TLDs were	
	fixed on the body.	
7	Time, Distance, and Shielding for Radiation	63
	Protection	03
8	Lead personal protective aprons	65
9	Lead eye glasses	66
10	Thyroid collar usually worn under the lead	67
	Apron	07
11	Radiation hazard warning safety signs	70
	Figures in Results	
1	Percentage distribution of studied sample	100
1	regarding their job title (n=150)	100
	Total percentage distribution of hazards	
	exposure at work as reported by the studied	107
2	sample (n=150)	10/

List of Figures 📚

Tist of Abbreviations

Abb.	Full Term
AEO	Atomic Energy Organization
ALADA	As Low As Diagnostically Acceptable
ALARA	As Low As Reasonably Achievable
ARS	Acute Radiation Syndrome
BEIR	Biological Effects Of Ionizing Radiation
BMC	Bone Marrow Cells
CAT	Computerized Axial Tomography
CDRH	Center For Devices And Radiology Health
CML	Chronic Myelogenous Leukemia
CNS	Central Nervous System
CRI	Cutaneous Radiation Injury
СТ	Computed Tomography
CVD	Cardiovascular Disease
DFI	Dna Fragmentation Index
DR	Diagnostic Radiation
ELF	Extremely Low Frequency
EMF	Electromagnetic Fields
EPA	Environmental Protection Agency
FIH	Fayoum Insurance Hospital
GFH	General Fayoum Hospital
GIT	Gastrointestinal Tract
НСТ	Hematocrit
HCWs	Healthcare Workers
HD	Heart Disease
HDR	High-Dose Radiation
IAEA	International Atomic Energy Agency
ICRP	The International Commission On Radiological
	Protection
IHD	Ischemic Heart Disease
IR	Ionizing Radiation
IRPA	International Radiation Protection Association

Abb.	Full Term
KAP	Knowledge, Attitude And Practice
KVP	Kilovoltage Peak
LBP	Low Back Pain
LD	Lethal Dose
LET	Linear Energy Transfer
LNT	Linear No Threshold
LSS	Limited Sampling Schedule
MCH	Mean Corpuscular Hemoglobin
MCHC	Mean Corpuscular Hemoglobin Concentration
MCV	Mean Corpuscular Volume
MFUH	Medical Fayoum University Hospital
MOHP	Ministry Of Health And Population
MRI	Magnetic Resonance Imaging
MSD	Musculoskeletal Disease
NCRP	National Council On Radiation Protection And
	Measurements
NIR	Non-Ionizing Radiation
NM	Nuclear Medicine
NRC	Nuclear Regulatory Commission
PC	Personal Computer
PPDs	Personal Protective Devices
PPE	Personal Protective Equipment
RPC	Radiation Protection Culture
RT	Radiotherapy
SFUH	Surgical Fayoum University Hospital
SPSS	Statistical Package For Social Sciences
TLDs	Thermo Luminescent Dosimeters
USNRC	United States Nuclear Regulatory Commission
VLF	Very Low Frequency
WBCs	White Blood Cells
WHO	World Health Organization
WRI	Work Related Ill-Health

Ionizing Radiation Hazards among Radiology Health Team

Esraa Fathi Hussein¹, Hanaa Abd Elhakiem Ahmed², Wafaa Khalil Ibrahim³

¹B.Sc. in nursing, ²Professor of Community Health Nursing, ³Assistant Professor of Community Health Nursing Faculty of Nursing - Ain Shams University

Abstract

Ionizing radiation is an energy type in the form of electromagnetic waves or particles. Radiographic imaging is extremely valuable as a diagnostic tool in medical fields leading to different health hazards to radiology health team and to the surrounding environment if safety measures are not observed. Aim of the Study: To assess the ionizing radiation hazards among Radiology Health Team. Subject and Methods: A descriptive analytical research design was utilized. Setting: The study was conducted in radiology departments in 4 urban hospitals at Fayoum city: (surgical Fayoum university hospital, medical Fayoum university hospital, Fayoum Health Insurance hospital, Favoum General Hospital). Sample: A purposive sample of all available radiology health team who are working with X-Ray devices in the selected settings. The total sample reached 150 persons. Tools: Three tools were used; 1st tool Ionizing Radiation Hazards Structured Ouestionnaire. 2nd tool Observational checklist of the ionizing radiation protection practices among radiology health team. 3rd tool Observational checklist of Environmental safety. Results: reveals that, the studied sample 'age ranged between 20 and 55 years, with mean $34.04 \pm$ 8.83 years. 40.7% of the studied sample were aged between 30 and 39 years old, with slightly more male 62.0%. Concerning job title, 43.3% of participants were working as radiology technician, radiologist 23.4%, nurse 33.3 and had 6 to 10 years of experience 30.7%. Concerning hazards exposure 52% of the studied sample reported physics hazards followed by biological and physical hazards 39.3% then chemical hazards 22.0%.the results also demonstrates that 90.0% of the studied sample hasn't had health problems before joining the field of ionizing radiation. On the other hand, after joining the field of ionizing radiation 67.3% of the studied sample was having health problems as anemia 18.7%. **Conclusion:** there was a relation between the studied sample' practices, job title, years of experience and receiving training program. There was negative correlation between knowledge and health problems, knowledge had positive correlations with practices, also work hazards and health problems Recommendation: Educational programs about ionizing radiation hazards and protection practices should be obligatory to all radiology health team.

Keywords: Ionizing radiation, Ionizing radiation hazards, Radiology Health Team.

Introduction

Radiation is energy come from unstable atoms that undergo radioactive decay, or it can be produced by machines. Radiation travels from its source in the form of energy waves or energized particles. Common sources of radiation include radon gas, cosmic rays from outer space, medical x-rays, and energy given off by a radioisotope (unstable form of a chemical element that releases radiation as it breaks down and becomes more stable). Radiation can damage cells. It is used to diagnose and treat some types of cancer (Environmental Protection Agency (EPA), 2021).

Ionizing radiation (IR) is a type of energy released by atoms that travels in the form of electromagnetic waves gamma or X-rays or particles neutrons, beta or alpha. The spontaneous disintegration of atoms is called radioactivity, and the excess energy emitted is a form of ionizing radiation. Unstable elements which disintegrate and emit ionizing radiation are called radionuclides. All radionuclides are uniquely identified by the type of radiation they emit, the energy of the radiation, and their half-life (Matthias et al., 2020).

Medical use of radiation accounts for 98 % of the population dose contribution from all artificial sources, and represents 20% of the total population exposure. Annually worldwide, more than 3600 million diagnostic radiology examinations are performed, 37 million nuclear medicine