

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

## بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

## جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

### BEHAVIOR OF PILE GROUPS UNDER LATERAL LOADS

Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of

#### MASTER OF SCIENCE

In
CIVIL ENGINEERING
STRUCTURAL ENGINEERING DEPARTMENT
By

### **Essam Amr Mohamed Elgridly**

Supervised by

Prof. Dr. Ali Abdel-Fattah Ali Ahmed
Professor of Geotechnical Engineering
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Prof. Dr. Ayman Lotfy Fayed
Professor of Geotechnical Engineering
Structural Engineering Department
Faculty of Engineering
Ain Shams University



### AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name : Essam Amr Mohamed Elgridly

Thesis: Behavior of pile groups under lateral loads

Degree : Master of Science in Civil Engineering (Structural Engineering)

### **EXAMINERS COMITEE**

| Name and Affiliation                  | Signature |  |
|---------------------------------------|-----------|--|
| Prof. Dr. Mohamed Elkhouly            |           |  |
| Professor of Geotechnical Engineering |           |  |
| Faculty of Engineering                |           |  |
| Cairo University                      |           |  |
| <b>Prof. Dr. Mohamed Monir</b>        |           |  |
| Professor of Geotechnical Engineering |           |  |
| Faculty of Engineering                |           |  |
| Ain Shams University                  |           |  |
| Prof. Dr. Ali Abd Al-Fattah Ali       |           |  |
| Professor of Geotechnical Engineering |           |  |
| Faculty of Engineering                |           |  |
| Ain Shams University                  |           |  |
| ·                                     |           |  |
| Prof. Dr. Ayman Lotfy Fayed           |           |  |
| Professor of Geotechnical Engineering |           |  |
| Faculty of Engineering                |           |  |
| Ain Shams University                  |           |  |

Date: / / 2021



# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Name : Essam Amr Mohamed Elgridly

Thesis : Behavior of pile groups under lateral loads

Degree : Master of Science in Civil Engineering

#### **SUPERVISORS COMITEE**

| Name and Affiliation                                                                                                    | Signature |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Prof. Dr. Ali Abd Al-Fattah Ali Ahmed Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University |           |  |
| Prof. Dr. Ayman Lotfy Fayed Professor of Geotechnical Engineering Faculty of Engineering Ain Shams University           |           |  |

Postgraduate Studies

/ / 2021

Date:

Authorization stamp: The thesis is authorized at / / 2021

College Board approval University Board approval

/ / 2021 / / 2021

### **CURRICULUM VITAE**

Name Essam Amr Mohamed Elgridly

**Date of Birth** 09 May 1992

Place of Birth Cairo, Egypt

**Nationality** Egyptian

Scientific B.Sc. of Structural Engineering, Faculty of Engineering,

degree Shorouk Academy, 2016

Current Job Structural Design Engineer, Structure Division, Enoia

Consulting Engineers.

### **STATEMENT**

This thesis is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author at the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Name: Essam Amr Mohamed Elgridly

Signature:

Date: / / 2021

### **ACKNOWLEDGMENT**

First and foremost, thanks to GOD for his many graces and blessings.

I wish to express my deepest gratitude and appreciation to Dr. Ayman Lotfy Fayed, Professor of Geotechnical engineering, Structural Department, Faculty of Engineering, Ain Shams University for his patience, help, guidance, useful suggestions, dedication, encouragement, and kind supervision.

My grateful appreciation also extends to Dr. Ali Abdel-Fattah, Professor of Geotechnical engineering, Structural Department, Faculty of Engineering, Ain Shams University for his fruitful comments and valuable advice throughout this research till its completion which is gratefully acknowledged and sincerely appreciated.

Most importantly, my deepest thanks and love for my family, your constant and everlasting support is the reason for being able to finish this research.

### **ABSTRACT**

In pile groups, pile-soil interaction between the piles reduces the pile's lateral resistance. To predict the pile group behavior under lateral loads the p-multiplier approach is commonly used, or the group reduction factors. Different experimental studies have been conducted on pile groups but due to the difficulty and the limited capacity of the loading equipment most of those studies were conducted on small pile groups with free-head condition and small spacing between piles. These drawbacks are the reason for using three-dimensional finite element numerical modeling to study the behavior of pile groups under lateral loads. This research studies the group reduction factor of pile groups with different sizes, spacing, and head conditions. A numerical model is formed to simulate the behavior of pile groups. The reliability of the model is first validated using a full-scale lateral load test on pile group in sand. The established models are used to calculate the group reduction factors of the pile groups. The computed group reduction factors are compared with previous experimental data. This research gives a greater insight of the lateral capacity of the piles in the group based on their row position in the group. The lateral deflection curve and bending moment profile of various piles of different rows are compared. This research finds that the design guidelines overestimated the pile group reduction factor especially for larger pile groups with larger spacing between piles and for pile groups with a fixed head condition such as AASHTO and FEMA P-751.

**Keywords:** Pile group reduction factor, P-multiplier, Soil-Pile interaction, Deep foundations, lateral loads.

## TABLE OF CONTENTS

| LIST C | )F Fl | IGURESX                      |
|--------|-------|------------------------------|
| LIST C | F T   | ABLESXX                      |
| Chapte | r (1) |                              |
| 1.1    | Pro   | oblem definition1            |
| 1.2    | Stu   | dy objectives2               |
| 1.3    | The   | esis outline3                |
| Chapte | r (2) |                              |
| 2.1    | Bac   | ckground4                    |
| 2.1    | .1    | Single pile                  |
| 2.1    | .2    | Pile group                   |
| 2.2    | Lite  | erature review18             |
| 2.2    | .1    | Full-scale tests             |
| 2.2    | .2    | Centrifuge tests             |
| 2.2    | 3     | Numerical models63           |
| 2.3    | Lite  | erature review summary75     |
| 2.4    | Des   | sign curves and guidelines84 |
| Chapte | r (3) | 90                           |
| 3 1    | Inti  | roduction 90                 |

| 3.2 Si     | te geotechnical characterization | 90  |
|------------|----------------------------------|-----|
| 3.3 Si     | ngle pile load test              | 96  |
| 3.3.1      | Layout and instrumentation       | 96  |
| 3.3.2      | Analysis and results             | 97  |
| 3.4 Pi     | le group test                    | 102 |
| 3.4.1      | Test layout                      | 102 |
| 3.4.2      | instrumentation                  | 106 |
| 3.5 Pi     | le group response                | 107 |
| 3.5.1      | Load distribution                | 107 |
| 3.5.2      | Bending moment                   | 110 |
| 3.6 A1     | nalysis of group response        | 114 |
| 3.6.1      | P-multiplier approach            | 115 |
| 3.6.2      | Strain wedge approach            | 122 |
| 3.7 Fi     | ndings                           | 126 |
| Chapter (4 | )                                | 128 |
| 4.1 In     | troduction                       | 128 |
| 4.2 Co     | ontinuum model                   | 129 |
| 4.2.1      | MIDAS GTS-NX Computer Program    | 130 |
| 4.2.2      | Model development                | 131 |

| 4.2    | 2.3 Model validation                                   | 151      |
|--------|--------------------------------------------------------|----------|
| 4.3    | Calculating the group reduction factors                | 157      |
| 4.4    | summary                                                | 157      |
| Chapte | er (5)                                                 | 159      |
| 5.1    | Introduction                                           | 159      |
| 5.2    | Obtained group reduction factors                       | 160      |
| 5.3    | Comparison with the previous experimental studies      | 163      |
| 5.3    | 3.1 Free-head pile groups                              | 163      |
| 5.3    | 3.2 Fixed-head pile groups                             | 164      |
| 5.4    | Lateral load distribution                              | 170      |
| 5.5    | Bending moment                                         | 171      |
| 5.6    | Comparison with design guidelines and codes provisions | 177      |
| 5.7    | Summary Error! Bookmark not                            | defined. |
| Chapte | er (6)                                                 | 185      |
| 6.1    | Conclusions                                            | 185      |
| 6.2    | Recommendations                                        | 188      |
| REFEI  | RENCES                                                 | 189      |

## LIST OF FIGURES

| Figure 2.1 Edge effect and Shadowing effect                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.2 Concept of the strain-wedge model                                                                                                   |
| Figure 2.3 Non-linear springs and p-y curves in p-y method                                                                                     |
| <b>Figure 2.4</b> Coefficients (C1-C2-C3) (API,2007)                                                                                           |
| <b>Figure 2.5</b> Relationship between the initial subgrade reaction modulus and the relative density with Friction angle (API,2007)           |
| Figure 2.6 Definition of p-multiplier                                                                                                          |
| Figure 2.7 P-Y curve for piles in the first row, Meimon et al. (1986)21                                                                        |
| Figure 2.8 P-Y curve for piles in the back row, Meimon et al. (1986)22                                                                         |
| Figure 2.9 Load-Deflection curve for the pile group rows (Brown et al 1987)                                                                    |
| Figure 2.10 Avg. load per pile vs deflection for single pile and rows of pile                                                                  |
| group under static load (1 cycle) (Brown et al. 1988)26                                                                                        |
| <b>Figure 2.11</b> Avg. load per pile vs deflection for single pile and rows of pile group under cyclic load (100 cycle) (Brown et al. 1988)27 |
| <b>Figure 2.12</b> Computed vs experimental p-y curves for a single pile (Brown et al. 1988)                                                   |
| Figure 2.13 P-multiplier vs depth (Brown et al. 1988)29                                                                                        |

| Figure 2.14 P-y curve at 1.5-meter depth (Ruesta and Townsend 1997)30                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 2.15</b> Rollins et al (2003,a) P-multiplier vs pile spacing/pile diameter for the leading row                                                         |
| <b>Figure 2.16</b> Rollins et al (2003, a) P-multiplier vs pile spacing/pile diameter for the trailing row                                                       |
| Figure 2.17 layout of the test site (Rollins et al. 2003, b)39                                                                                                   |
| <b>Figure 2.18</b> Average load per pile vs. deflection for piles in 3x3 pile group with S = 5.6 D and for the single pile (Rollins et al. 2003, b)40            |
| Figure 2.19 Average load per pile vs. deflection for piles in $3x4$ pile group with $S = 4.4$ D and for the single pile (Rollins et al. 2003, b)41               |
| Figure 2.20 Average load per pile vs. deflection for piles in $3x5$ pile group with $S = 3.3$ D and for the single pile (Rollins et al. 2003, b)42               |
| <b>Figure 2.21</b> Average load per pile vs. deflection for piles in 3x3 pile group with S = 3 D (610 mm piles) and for the single pile (Rollins et al. 2003, b) |
| Figure 2.22 Maximum bending moment vs. average load per pile for piles in                                                                                        |
| 3x3 pile group with S =5.6 D and for the single pile (Rollins et al. 2003, b)                                                                                    |
| Figure 2.23 Maximum bending moment vs. average load per pile for piles in                                                                                        |
| 3x3 pile group with $S = 3$ D and for the single pile (Rollins et al. 2003, b)45                                                                                 |