

Methotrexate Induced Lung Diseases in Rheumatoid Arthritis Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Physical Medicine, Rheumatology & Rehabilitation

By

Mayada Taha Mostafa

M.B.B.Ch

Under Supervision of

Prof. Dr. Mohamed Gamal Zaki

Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine - Ain Shams University

Prof. Dr. Ahmed Mohamed El Yasaky

Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine - Ain Shams University

Prof. Dr. Rana Ahmed El Hilaly

Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Gamal Zaki,** Professor of Physical Medicine,
Rheumatology & Rehabilitation, Faculty of Medicine Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ahmed el Vasaky,** Professor of Physical Medicine,
Rheumatology & Rehabilitation Faculty of Medicine Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Rana**Ahmed El Tbilaly, Professor of Physical Medicine,
Rheumatology & Rehabilitation, Faculty of Medicine Ain Shams University, for her great help, active
participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mayada Taha Mostafa

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
Review of Literature	
Rheumatoid Arthritis Related Chest Disease	s5
Methotrexate and Other DMARDS related Lu	ung Disorders 34
Value of Pulmonary Function Tests	47
Patients and Methods	
Results	73
Discussion	
Summary	113
Conclusion	
Recommendations	118
References	119
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Epidemiolical factors and histological a findings in RA-related chest diseases		6
Table (2):	This table demonstrates pulmonary compliance associated with drugs used to treat RA		35
Table (3):	Potential noninfective pulmonary compliant associated with drugs used to treat RA		44
Table (4):	The demographic data of MTX and not groups		74
Table (5):	The demographic data of MTX and no groups		74
Table (6):	Modified DAS score in MTX and Non- groups		77
Table (7):	Comparison between both groups as regar symptoms		79
Table (8):	The disease duration and duration of treatments and non-MTX groups		81
Table (9):	Comparison between both groups as regreactive protein CRP		82
Table (10):	Comparison between both groups according rheumatoid factor RF:		83
Table (11):	Comparison between both groups accord ACPA	-	84
Table (12):	Comparison between both groups as regard of hemoglobin, total leukocytic count and pl		85
Table (13):	Comparison between both groups as regard of ESR		88
Table (14):	Comparison between both groups as regard of ALT and AST		89
Table (15):	Comparison between both groups as regard of creatinine		91

List of Tables (cont...)

Table No.	Title	Page No.
Table (16):	Comparison between both groups accor pulmonary function tests	•
Table (17):	Correlation between ACPA and put function tests of both MTX and non MTX together	groups
Table (18):	Correlation between Pulmonary function to dose of MTX for MTX group only	
Table (19):	Correlation between PFT and both: modification score and chest symptoms	
Table (20):	Correlation between PFT and both duration of treatment	

List of Figures

Fig. No.	Title Page No.
Figure (1):	Schematic illustration of the concepts in the pathogenesis of rheumatoid arthritis
Figure (2):	associated-interstitial lung disease (RA-ILD) (a) Axial and b) coronal computed tomography scans of usual interstitial pneumonia pattern in a patient with
Figure (3):	rheumatoid arthritis
Figure (4):	Computed tomography scans of a small unilateral pleural effusion (arrow) and pleural thickening in a patient with rheumatoid arthritis
Figure (5):	(a, b) Expiratory computed tomography scans of constrictive bronchiolitis with areas of mosaic attenuation consistent with air trapping in a patient with rheumatoid
Figure (6):	arthritis
Figure (7): Figure (8): Figure (9): Figure (10):	Pulmonary Function Tests
Figure (11):	Demonstrates different types of lung volume and capacities

List of Figures cont...

Fig. No.	Title	Page No.
Figure (12):	An example of a (normal) spirom for a hospital spirometer	
Figure (13):	Chest examination palpation auscultation	percussion
Figure (14):	Joint involvement in modified DA	
Figure (15):	Age	
Figure (16):	The demographic data of MTX	and non-
	MTX groups Error! Bookm	
Figure (17):	Modified DAS score in MTX and	Non MTX
_	groups	77
Figure (18):	Comparison between both groups	
	chest symptoms	79
Figure (19):	The disease duration and du	uration of
	treatment in MTX and non-MTX	groups81
Figure (20):	Comparison between both groups	_
	C-reactive protein CRP	82
Figure (21):	Comparison between both groups	_
	to rheumatoid factor RF	
Figure (22):	Comparison between both groups	_
	to ACPA	
Figure (23):	Comparison between both groups	
()	levels of hemoglobin	
Figure (24):	Comparison between both groups	_
T' (07):	levels of total leukocytic count	
Figure (25):	Comparison between both groups	~
T' (00):	levels of platelets	
Figure (26):	Comparison between both groups	_
E: (97):	levels of ESR	
Figure (27):	Comparison between both groups	
Figure (28):	levels of ALT and AST Comparison between both groups	
rigure (20)•	levels of creatinine	•
	revers or creatifffile	

List of Figures cont...

Fig. No.	Title	Page No.
Figure (29):	Comparison between both group	s according
· ·	to pulmonary function tests	93
Figure (30):	Correlation between ACPA and	pulmonary
0	function tests of both MTX and	
	groups together	
Figure (31):	Correlation between Pulmonar	
8	tests and dose of MTX for MTX gr	•
Figure (32):	Correlation between PFT and bot	
	DAS score and chest symptoms	
Figure (33):	Correlation between PFT and of	
118010 (00)	disease	
Figure (34):	Correlation between PFT and I	······································
1 18 0110 (0 1/	treatment	
	01 00001110110	

List of Abbreviations

Abb.	Full term
ACPA	Anti citrullinated peptide antibodies
	American Thoracic Society
	Bronchus-associated lymphoid tissue
	Complete blood counts
	Anti-cyclic citrullinated peptide
	Chronic obstructive pulmonary disease
	Combined pulmonary fibrosis and emphysema
	C-reactive protein
	Connective tissue disease
<i>DAD</i>	Diffuse alveolar damage
	Desquamative interstitial pneumonia
	Erythrocyte sedimentation rate
ECM	Extracellular matrix
<i>ERV</i>	Expiratory reserve volume
<i>EULAR</i>	European league against rheumatism
<i>EV</i>	Extrapolated volume
	Forced expiratory time
FRC	Functional reserve capacity
FRC	Functional reserve capacity
<i>FVC</i>	Forced vital capacity
GOLD	Global Initiative for Obstructive Lung Disease
HAQ	Health Assessment Questionnaire
HLA	Human leukocyte antigen
HRCT	High-resolution computed tomography
<i>IC</i>	Inspiratory capacity
<i>IL</i>	Interleukins
<i>ILD</i>	Interstitial lung disease

IPF	Idiopathic pulmonary	fibrosis
IPF	Idiopathic pulmonary	fibrosis

List of Abbreviations (Cont...)

Abb.	Full term
<i>LIP</i>	Lymphocytic interstitial pneumonia
<i>LPD</i>	Lymphoproliferative disorder
<i>MMP</i>	Matrix metalloproteinases
<i>NSIP</i>	Nonspecific interstitial pneumonia
<i>PDGF</i>	Platelet derived growth factor
<i>RA</i>	Rheumatoid arthritis
RA-ILD	Rheumatoid arthritis associated-ILD
<i>RF</i>	Rheumatoid factor
<i>RV</i>	Residual volume
SNPs	Single Nucleotide Polymorphisms
<i>TLC</i>	Total lung capacity
<i>TNF</i>	Tumor necrosis factor
<i>UIP</i>	Usual interstitial pneumonia
<i>VAS</i>	Visual Analog Scale
VC	Vital capacity
<i>VEGF</i>	Vascular endothelial growth factor

Introduction

Pheumatoid arthritis (RA) is a progressive, systemic autoimmune disorder characterized by articular and extraarticular manifestations. The lung is commonly a site of extraarticular disease. Within the lung, manifestations of RA vary and may include airways, parenchymal, vascular, and pleural disease. Manifestations of lung disease in RA typically follow the development of articular disease, but in some instances lung involvement is the first manifestation of RA and is the most aggressive feature of the disease (Lee et al., 2007). Clinicians should therefore remain alert to the possibility of lung disease in all patients with RA.

RA is the most common connective tissue disease (CTD), with a prevalence of 0.5% to 2% in the general population (Gabriel et al., 2003). The disease occurs more frequently in women than in men with a ratio of 3:1. Extraarticular disease occurs in approximately 50% of patients, with the lung being a common site of involvement (Turesson et al., 2002). Lung involvement may occur in as many as 67% of patients, although some reports indicate a lower incidence (around 10%-20%) (Bilgici et al., 2005). This wide variation reflects differences in study design, study populations, and the way that lung disease in RA is defined. Many patients with RA have no clinical symptoms of respiratory disease despite radiographic or physiologic evidence of lung abnormalities,

often leading to a misrepresentation of disease prevalence. In a study of 52 patients with RA, high-resolution computed tomography (HRCT) abnormalities were identified in 67.3% with only 40% of patients having respiratory symptoms (Bilgici et al., 2005).

Mortality is increased in patients with RA with extraarticular manifestations relative to those without extra-articular involvement, with cardiovascular disease, infection, and lung disease being the leading causes. Mortality in RA is greatest within the first 5 to 7 years after diagnosis and risk may be slightly higher in men than in women, with a mortality ratio of 2.07:1.97 respectively (Young et al., 2007) Lung disease alone accounts for 10% to 20% of deaths in patients with RA, and most of these are attributed to interstitial lung disease (ILD) (Thomas et al 2003).

RA is a common disorder with a myriad of pulmonary manifestations. Although any compartment of the respiratory system is at risk, the ILDs cause the greatest concern. In its most severe form, affected patients can develop a fibrotic ILD with progression similar to that seen in IPF. Treatment is based on clinician opinion and there are no placebo-controlled trials. In order to effectively care for these patients, a better understanding is needed of the link between synovitis and pulmonary disease. Predictors of lung involvement, biomarkers to clinically phenotype patients, and well-designed treatment trials are urgently needed (Young et al., 2007).

Methotrexate has shown efficacy for the treatment of especially rheumatoid arthritis (RA). several diseases, Methotrexate has also been implicated as a causative agent in interstitial lung disease. Patients with RA may develop pulmonary manifestations of their disease and are at increased risk of respiratory infection. The aim of this study was to evaluate the risk of pulmonary disease among patients with RA treated with methotrexate (Rojas-serraano et al., 2012).

AIM OF THE WORK

We delivered this study to

- 1. Determine any association between methotrexate and induction of any lung abnormalities for rheumatoid arthritis patients.
- 2. Find out whether these complications occur from the disease itself or drugs like methotrexate have a role in aggravate these lung diseases.