

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Modelling and Simulation of Tunnel Field Effect Transistor (TFET)

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering (Electronics Engineering and Electrical Communications)

by

Yasmin Yahia Ebrahim Morgan
Bachelor of Science in Electrical Engineering
(Electronics Engineering and Electrical Communications)
Faculty of Engineering, Modern Academy for Engineering and
Technology, 2008

Supervised By

Prof. Dr. Mohamed Abdelhamid Abouelatta Assoc. Prof. Ahmed Shaker Ahmed Zaki Ghazala Assoc. Prof. Mohamed Mahmoud ElBanna Cairo - (2021)

Electronics and Communications

Modelling and Simulation of Tunnel Field Effect Transistor (TFET)

by

Yasmin Yahia Ebrahim Morgan
Bachelor of Science In Electrical Engineering
(Electronics Engineering and Electrical Communications)
Faculty of Engineering, Modern Academy for Engineering and
Technology, 2008

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Tarek Mohammed Abdolkader	
Electronics and Communications , University	
Prof. Dr.Mohamed Kame Hassan Elsaid	
Electronics and Communications , University	
Prof. Dr. Mohamed Abdelhamid Aboulatta Electronics and Communications , University	
Dr. Ahmed Shaker Zaki Ghazala Electronics and Communications, University	

Date:27 November 2021

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Yasmin Yahia Ebrahim Morgan

Signature ... Yasmin Morgan....

Date: 29 November 2021

Researcher Data

Name : Yasmin Yahia Ebrahim Morgan

Date of birth : 6/12/1985

Place of birth : Cairo

Last academic degree : Bachelor degree in Engineering

Science

Field of specialization : Electronic and Communication

: Modern Academy for

University issued the degree

Engineering and Technology

Date of issued degree : June 2008

Current job : Electronic Engineer

Thesis Summary

Scaling down conventional MOSFETs has a vital challenge in electronic circuit design. The scaling of MOSFET depends not only on the device dimension and gate oxide thickness but also on the applied voltage. Unfortunately, down scaling has a negative effect on increasing the power consumption and other issues.

Several studies demonstrated to solve the MOSFETs problems but most of them are rendered impractical. Following the International Technology Roadmap for Semiconductors (ITRS), there is a vital need to reduce the device size. So, this led to Steep Slope devices like TFET devices to come into play as a problem-solving device.

TFET is promising device with low power consumption, low subthreshold swing, low applied voltage and low OFF current due to its band-to-band tunnelling mechanism. However, it has a low ON current and suffers from ambipolar effects. Several studies have been developed to increase the ON current and to reduce the ambipolar effect. These studies are based on either changing the structure of the device or changing the materials used in manufacturing, spacers, or gate dielectric.

In this work, Si-based DG (double gate) TFET devices are extensively studied by analytical calculations and simulations. Analytical calculations use MATLAB environment on the Si-DG TFET. It uses semi-analytical model considering depletion regions at both source/channel and drain/channel junctions. It also uses the SILVACO TCAD simulator in modelling. Here it is used to model a Tapered shape TFET, to study its impact on the ambipolar effect and ON current and ON/OFF current ratio.

Key words: DG-TFET, BTBT, ON Current, SS, ambipolar

Acknowledgment

الحمد لله رب العالمين

Foremost, I would like to express the deepest appreciation to my Supervisors Prof. Dr. Mohammed Abouelatta, Dr. Mohammed ElBanna and Dr. Ahmed Shaker for their encouragement, monitoring and insightful comments.

I would like to thank Prof. Dr. Mohammed Abouelatta for his patience, motivation and continuous support.

I would like to thank Dr. Mohammed ElBanna for his guidance in my first steps in the research.

My sincere thanks, To Dr. Ahmed Shaker for his efforts, patience and guidance as I learned so many valuable things all the time. Also, for his time to keep in touch and revising my work.

I would like also, to thank Prof. Dr. Salah Gamal for his efforts and assistance.

Last but not the least; I would like to thank my family and my friends for their continuous support, love and encouragement. Thanks, my mom for her constant source of inspiration.

November 2021

Table of Contents

Content	ts	i
List of H	Figures	.iii
List of T	Гables	vii
List of A	Abbreviations	viii
List of S	Symbols	X
Chapter	r One: Literature Review	
1.1	Introduction	19
1.2	MOSFET Limitations	20
1.3	TFET Structure and Operation	22
1.3.1	TFET Structure	22
1.3.2	TFET theory of operation	23
1.4	FFET Characteristic Parameters	24
1.4.1	Sub threshold Swing (SS)	24
1.4.2	Short Channel Effects	25
1.4.3	Transconductance	26
1.4.4	Leakage current:	26
1.5	TFET's advantages:	27
1.6	FFETs Limitations:	27
1.6.1	Ambipolar effect	28
1.6.2	Miller Capacitance	28
1.6.3	ON-Current	29
1.7	TFET with new materials:	30
Chapter	r Two: Device Simulation	
2.1	Silvaco simulator:	39
2.1.1	ATLAS Inputs and Outputs:	40
2.1.2	Modes of operation	41

2.1.3	The Atlas Command order:	41
2.2	Si-DG TFET Simulation:	42
2.3	Potential and Electric Field in DG-TFET:	48
2.4	The ON-OFF Current in DG-TFET:	50
Chapte	er Three: Design of Tapered-Shape TFET Structur	·e
3.1	Tapered-shape TFET design:	56
3.2	Simulation methodology and device structure parameters	eters:
3.3	Results and discussions:	59
Chapte	er Four: Analytical Modelling of TFET	
4.1	Analytical Model Derivation:	66
4.1.1	Drain Current Modeling:	72
4.1.2	2 Capacitance Modeling:	74
4.2	Model Evaluation and Simulation Results:	75
4.2.1	Potential and Electric Field:	76
4.2.2	2 Minimum tunneling width:	78
4.2.3	B Drain current:	79
4.2.4	1 Capacitance:	81
4.2.5	5 Cutoff frequency:	82
4.2.6	5 Validity of depletion approximation:	83
Chapte	er Five: Conclusions and Future Works	
Cone	clusions:	85
Futu	re Work:	86
Refe	erences	87

List of Figures

Figure 1.1 The transistor size scaling trend according to ITRS [48]
Figure 1.2 The scaling feature and gate length according to 2013 Semiconductor Roadmap [47]
Figure 1.3 Si-DG TFET. 23
Figure 1.4 The TEFT operation shows the ON- OFF state and the BTBT mechanism
Figure 1.5 The average swing Vs. the point swing25
Figure 1.6 The Transfer characteristics of Si-TFET27
Figure 1.7 Miller Capacitance in inverter schematic diagram29
Figure 1.8 The capacitance voltage characteristics Cgg, Cgs and Cgd in Si-TFET and Si MOSFET [4]29
Figure 1.9 (a) Si-Ge graded heterojunction structure, (b) the I _D -V _{Gs} transfer characteristics of Si-Ge [8]32
Figure 1.10 InAs and GeSb with (a) uniform body thickness and Non-uniform body thickness, (b) the I _D -V _{Gs} transfer characteristics [7].
Figure 1.11 (a) The use of Ge-Si in three-dimensional TFET (GAA), (b) the I _D -V _{Gs} transfer characteristics of GAA TFET [16].

Figure 1.12 (a) DG TFET with different dielectric materials, (b) DG nMOSFET with different dielectric materials [2]35
Figure 1.13 (a) the use of dielectric material as spacer, (b) I _D -V _{Gs} transfer characteristics [17]36
Figure 1.14 Switching and RF characteristics performance (a) intrinsic delay time, (b) cut off frequency [17]37
Figure 2.1 Atlas inputs and outputs40
Figure 2.2 Si-DG TFET regions and Electrodes42
Figure 2.3 Si-DG TFET Meshing
Figure 2.4 Meshing Boundaries
Figure 2.5 The Doping profile of Si-DG TFET45
Figure 2.6 The I _D -V _{GS} Transfer characteristics of Si-DG TFET. 48
Figure 2.7 The The Si-TFET (a) Energy band diagram (b) Electric Field at certain V_{Gs}
Figure 2.8 The Potential of Si-TFET50
Figure 2.9 The TFET ON-current and the Ambipolar effect51
Figure 2.10 TFET transfer characteristics using high K (HfO ₂)

Figure 2.11 The effect of Different Doping in Source, Channel and Drain Regions on the TFET characteristics52
Figure 2.12 Asymmetric gate oxide with different Work function [20].
Figure 2.13 The changing in OFF current through the use of H _{NAR} [20]53
Figure 2.14 Asymmetric gate dielectric and body thickness [21].
Figure 3.1 The device structure using Devedit tool
Figure 3.2 The Meshing Profile in the device structure57
Figure 3.3 Basic TFET tapered-channel structure (dimensions are in μm)
Figure 3.4 A comparison of IV characteristics of Conventional and Tapered TFET for (a) Td = 6 nm and (b) Td = 8 nm60
Figure 3.5 Impact of L_{chu} on the (a) I_{ON}/I_{OFF} ratio, and (b) ambipolar current, I_{amb} , for $T_d=6$ nm and $T_d=8$ nm61
Figure 3.6 A comparison of $T_d = 6$ nm and $T_d = 8$ nm for (a) subthreshold swing (b) threshold voltage
Figure 3.7 Electric field when $V_{DS} = 1 \text{ V}$ and $V_{GS} = -1 \text{ V}$ for conventional and tapered-channel TFET structures63
Figure 4.1 Device structure showing different regions67
Figure 4.2 Surface potential for a variation of the gate voltage from 0 to 1 V at $V_D = 1$ V

 \mathbf{V}