

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

EFFECT OF SOME SEMEN EXTENDERS ON FERTILITY AND HATCHABILITY OF ARTIFICIALLY INSEMINATED DUCKS

By

SAFAA ALI MOSTAFA HASAN ALI

B.Sc. Agric. Sc. (Poultry Production), Fac. of Agric., Ain Shams Univ., 1998 M.Sc. Agric. Sc. (Poultry Physiology), Fac. of Agric., Ain Shams Univ., 2006

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

in
Agricultural Sciences
(Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Sham University

Approval Sheet

EFFECT OF SOME SEMEN EXTENDERS ON FERTILITY AND HATCHABILITY OF ARTIFICIALLY INSEMINATED DUCKS

By

SAFAA ALI MOSTAFA HASAN ALI

B.Sc. Agric. Sc. (Poultry Production), Fac. of Agric., Ain Shams Univ., 1998 M.Sc. Agric. Sc. (Poultry Physiology), Fac. of Agric., Ain Shams Univ., 2006

thesis for Ph.D. degree has been approved by:
Ahmed Mohamed El- Kaiaty Mohamed
Prof. Poultry Physiology, Faculty of Agriculture, Cairo University.
Yousry Mohamed El Hommosany
Prof. Emeritus of Poultry Physiology, Faculty of Agriculture, Ain
hams University.
Ayman Mohamed Hassan
Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams
Jniversity.
brahim El-Wardany El- Sayed
Prof. Emeritus of Poultry Physiology, Faculty of Agriculture, Ain
Chams

Date of Examination: 31 / 12 / 2019

EFFECT OF SOME SEMEN EXTENDERS ON FERTILITY AND HATCHABILITY OF ARTIFICIALLY INSEMINATED DUCKS

By

SAFAA ALI MOSTAFA HASAN ALI

B.Sc. Agric. Sc. (Poultry Production), Fac. of Agric., Ain Shams Univ., 1998 M.Sc. Agric. Sc. (Poultry Physiology), Fac. of Agric., Ain Shams Univ., 2006

Under the supervision of:

Dr. Ibrahim El Wardany EL Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Ayman Mohamed Hassan

Prof. of Poultry Physiology, Department of Poultry production, Faculty of Agriculture, Ain Shams University.

Dr. Amal Mohamed Hassan

Researcher Professor of Poultry physiology, Desert Research Center.

ABSTRACT

Safaa Ali Mostafa Hasan Ali: Effect of Some Semen Extenders on Fertility and Hatchability of Artificially Inseminated Ducks. Unpublished Ph.D. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2020.

This study aimed to explore the influence of different antioxidants supplementation in drinking water on Muscovy drake's semen quality traits and some blood plasma biochemical traits as indicators of physiological and reproductive conditions. In addition, impact composition of diluents or extenders on sperm protection during chilled storage procedures at low-temperature (5°C), fertility and hatchability percentages of eggs. Twenty four healthy Muscovy drakes and eighty hens were artificially inseminated to evaluate the effect of different antioxidants supplementation in drinking water on some productive and reproductive traits. Drakes were divided into four groups: control (T₁), while the second (T₂), third (T₃) and fourth (T₄) groups were supplemented with vit.E-Se (200ppm/l), vit.C (300mg/l) and Zinc sulphate (0.500mg/l), respectively.

Semen characteristics were evaluated on freshly and diluted semen using three well-known extenders (A, B, C) and a new proposed extender (D) to explore the best extender which show the tolerance performance on sperm protection during storage (at 5°C for 0, 6, 12 and 24 hours period).

The obtained results indicated that drakes supplemented with vit.E-Se, vit. C and Zinc sulphate showed a significant (P<0.05) increase in ejaculate volume, sperm motility, spermatozoa concentration while decreased (P<0.05) total abnormalities, coiled-tail spermatozoa, sperm

clumps and dead sperms compared with drakes un-supplemented any antioxidants.

Semen diluted by the new proposed extender (D) with vit.C supplementation had the higher percentage of sperm motility (87.5%) followed by drakes supplemented with Zinc sulphate (85.55%) and those supplemented with vit.E-Se (85%), respectively compared to control group.

Plasma biochemical traits in relation to supplementation of different types of antioxidants, statistical analysis showed in-significant effects (P>0.05) of supplementation of different types of antioxidants on almost all studied constituents except for ALT, AST activities and circulating total cholesterol which showed significant decrease (P<0.05) in their values for drakes supplemented with different antioxidants.

Fertility and hatchability percentages were significantly enhanced by different extender treatments, either for fresh semen or after 6 h storage period at 5°C. It is concluded that supplementation of different antioxidants or Zinc sulphate to drinking water of Muscovy drakes during summer season could be recommended for improving semen quality traits and both fertility and hatchability percentages. The newly proposed semen extender was superior for all tested parameters.

Key words: Ducks, Semen quality, Extenders, Fertility, Hatchability

ACKNOWLEDGEMENT

I would like to express my deep thanks to prof. Dr. Ibrahim El-Wardany El-Sayed, Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for giving me the opportunity to undertake this Ph.D. Thesis and suggesting the problem, I couldn't have done it without the support, guidance in different ways and enthusiasm he gave me, and unlimited effort in providing facilities, revising and correcting the manuscript.

Thanks also to Dr. Ayman Mohamed Hassan, Professor of Poultry Physiology, Faculty of Agriculture, Ain Shams University, for his comments, supervision and excellent guidance during this study.

Deep thanks go to Co-supervisor Dr. Amal Mohamed Hassan, Professor of Poultry Physiology, Desert Research Center; for her supervision, excellent guidance and comments, during the preparation of the thesis.

My sincere appreciation is extended to Prof.Dr. Ayman Ghonim, Professor of Poultry husbandry, Animal Production Research Institute, for his unlimited helps in providing Muscovy drakes and for valuable advices and help during the practical work of this study.

Also, I would like to thanks and appreciate all the staff members of the Poultry Production Department, Faculty of Agriculture, Ain Shams University, and in Desert Research Center, for their cooperation, kind help and encouragement during the course of this study.

My sincere appreciate to Prof. Dr. Ahmed Lotfy El-Sayed, Professor of Animal Physiology, Desert Research Center, for his facilitating the practical work during the course of the present study.

Big thanks to my son, Ibrahim and my daughter Jana for their understanding, having them in my life is a blessing. God bless them and take them to the greatest height in life (Amen).

I sincerely thank and appreciate my husband Saleh who is all things in my life, for all his selfless support spiritually emotionally and financially towards my academic pursuit.

Finally, sincere appreciation and thanks is expressed to my family, the late my mother (Maami you brought me to the life) and the late my father for your love for me, your words and early encouragement, my lovely sister Eman Ali for pushing me forward and Praying for me.

CONTENTS

	Page
LIST OF ABBREVIATIONS	IV
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1.Semen quality traits	4
2.2. Reproduction in waterfowl	5
2.3. Factors affecting semen production and quality	6
2.3.1. Age and Breed.	6
2.3.2. Environmental factors.	8
2.3.3. Climatic conditions:	8
2.4. Identification of suitable timing for semen collection	9
specimens.	
2.5. Storage of avian semen.	9
2.6. Evaluation of extenders for liquid storage (short-term) of	10
semen.	
2.7. Dietary vitamin E in relation to productive and reproductive	12
performance of avian species.	
2.8. Dietary vitamin C / ascorbic acid on productive and	16
reproductive activity in avian species.	
2.9. Lycopene	17
2.10.L-carrnitine	18
2.11. Selenium and Zinc elements	21
2.12. Semen characteristics.	24
2.12.1. Semen color.	24
2.12.2. Semen Quality.	24
2.12.3. Semen volume.	25
2.12.4. Sperm motility.	26
2.12.5. Sperm concentration.	27

2.13. Storage temperature and time.	28
2.14. Semen extenders.	29
2.15. Some suitable extenders used for liquid storage (short-term)	30
and cryopreservation (long-term) of avian semen (cocks, drakes	
and ganders).	
2.16. Factors affecting semen characteristics.	31
2.17. Effect of semen extenders and storage period on semen	33
characteristics.	
2.18. The semen dose for AI.	35
2.19. Effect of extender type and storage period at 5°C on egg	36
fertility and hatchability.	
3. MATERIALS AND METHODS	38
3.1. Site of the study	38
3.2. Birds, housing and study design	38
3.3. Experimental procedures	39
3.3.1.Semen collection and processing	39
3.3.2.Semen characteristics assays	4 0
3.4. Semen extenders preparation and processing	41
3.5. Blood samples and biochemical assays	41
3.5.1.Plasma proteins determinations	42
3.5.2.Plasma total cholesterol (TC, mg/dl) determination	42
3.53.3.Plasma ALT and AST activities	42
3.5.4.Plasma thyroid and sexual hormones assays	42
3.6. Fertility and hatchability estimation	43
3.7. Insemination	43
3.8. Egg collection and incubation	43
3.9.Statistical analysis	44
4. RESULTS AND DISCUSSION	46
4.1. Impact of different treatments and age on semen quality	46
traits of Muscovy drakes	
4.1.1 Ejaculate volume, spermatozoa concentration and sperm	46
progressive motility	

4.1.2 Spermatozoa morphological parameters as affected by age of	52
drakes:(Total abnormalities, coiled-tail sperms, sperm clumps and	
dead sperms percentages)	
4.1.3. Spermatozoa morphological parameters as affected by	54
storage period at 5°C	
4.1.3. Sperm progressive motility	59
4.1.4. Dead spermatozoa percentage	60
4.1.5. Spermatozoa total abnormality	61
4.1.6. Sperm clumps	62
4.2. Impact of type of extender and antioxidant supplementation	64
on sperm morphological parameters of diluted semen of Muscovy	
drakes:	
4.2.1 Spermatozoa progressive motility	65
4.2.2. Percentage of dead spermatozoa	66
4.2.3. Total spermatozoa abnormality	66
4.2.4 Coiled-tail sperms and spermatozoa clumping	67
4.3.Impact of type of extender and chilled storage period on	73
morphological semen traits	
4.3.1. Spermatozoa progressive motility	73
4.3.2. Dead spermatozoa percentage	74
4.3.3. Spermatozoa total abnormalities	75
4.3.4. Spermatozoa clumps percentage	76
4.4. Fertility and hatchability percentages of artificially-	81
inseminated laying Pekin ducks	
4.4.1. Eggs fertility	81
4.4.2. Eggs hatchability	83
4.5 Plasma biochemical parameters	86
4.5.1. Plasma proteins	86
4.5.2. Liver function tests	89
4.5.2.1. Plasma total cholesterol (TC)	89
4.5.2.2. Hepatic enzymes (ALT and AST)	91
4.5.3. Hormonal changes	94

4.5.3.1. Tri-iodothyronine hormone	94
4.5.3.2. Plasma total testosterone hormone	96
5. SUMMARY AND CONCLUSION	99
6. REFERENCES	102
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
Table (1)	Semen volume and sperm concentration and need of	26
	sperm concentration per insemination (million) in	
	different species of poultry	
Table (2)	Some of types of foreign and locally semen	31
	extenders for waterfowls	
Table (3)	Semen dose and frequency of insemination for AI in	36
	some species of poultry	
Table (4)	Description of the experimental treatments	39
Table (5)	Compositions of different types of semen extenders	41
	used for experimental groups of Muscovy drakes	
Table (6)	Effect of different treatments and age on ejaculate	49
	volume, sperm motility (%) and spermatozoa	
	concentration of Muscovy drakes	
Table (7)	Least squares analysis of different treatments	50
	affecting the ejaculate volume, sperm motility and	
	sperm concentration of Muscovy drakes.	
Table (8)	Effect of different treatments and age on total	54
	abnormality, tail-coiled sperms clumps and dead	
	spermatozoa percentages of Muscovy drakes	
Table (9)	Least squares analysis of treatments affecting the	55
	total abnormalities, tail-coiled, sperm clumps and	
	dead spermatozoa of Muscovy drakes	
Table (10)	Effect of different treatments and storage period on	62
	sperm motility, total abnormalities, sperm clumps	
	and dead spermatozoa of Muscovy drakes	
Table (11)	Least squares analysis of different treatments	63
	affecting the sperm motility, total abnormalities,	
	sperm clumps and dead spermatozoa of Muscovy	
	drakes	