

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

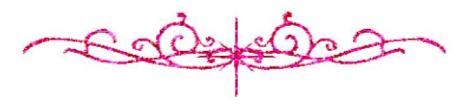
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

بعض الوثائق

الأصلية تالفة



بالرسالة صفحات

لم ترد بالأصل

AN ANATOMICAL STUDY OF THE GLUTEAL AND LUMBAR PERFORATOR-BASED FLAPS AND ITS APPLICATIONS

Thesis

Submitted to the Faculty of Medicine
University of Alexandria
In partial fulfillment of the
Requirements of the degree of

Doctor of Anatomy & Embryology

By

EHAB MOSTAFA EL-ZWAWY

Master of Anatomy and Embryology
Assistant Lecturer Anatomy and Embryology,

Faculty of Medicine
University of Alexandria

SUPERVISORS

Prof. Dr. Foaad Sabry Ali Hakel

Professor of Anatomy & Embryology Faculty of Medicine University of Alexandria

Prof. Dr. Adel Mostafa Abd El-Aziz

Professor of Anatomy & Embryology Faculty of Medicine University of Alexandria

Prof. Dr. Sherly Helal El-Massarani

Professor of Anatomy & Embryology
Faculty of Medicine
University of Alexandria

CO-WORKERS

Prof. Dr. Hussein Saber Abulhassan

Professor of Plastic Surgery Faculty of Medicine University of Alexandria

Prof. Dr. Saad Saad Hasona

Professor of Anatomy & Embryology
Faculty of Medicine
University of Alexandria

ACKNOWLEDGEMENT

Few words written here can never express feelings of gratitude and kind regards I do have for my supervisors.

I would like to express may deepest gratitude and appreciation to *Prof.*Dr. Foaad Sabry Ali Hakel, Professor of Anatomy & Embryology, Faculty of Medicine, University of Alexandria, for his supervision and encouragement during the progress and finalization of this work; without his meticulous guidance, endless cooperation, valuable advice and wise helpful critisism this work would have never been completed and spending much of his precious time in fulfillment of this work.

I am greatly indebted to *Prof. Dr. Adel Mostafa Abd El-Aziz*, Professor of Anatomy & Embryology, Faculty of Medicine, University of Alexandria, for his constructive guidance and valuable instructions and for the effort he gave to review every step in it and everlasting help throughout this work.

I will remain grateful to *Prof. Dr. Sherly Helal El-Massarani*, Professor of Anatomy & Embryology, Faculty of Medicine, University of Alexandria, for her continuous follow up and meticulous guidance of this work and for her great efforts in the production of this work in the best shape.

I wish to express may deepest thanks to *Prof. Dr. Hussein Saber Abulhassan*, Professor of Plastic Surgery, Faculty of Medicine, University of Alexandria for his great help and faithful effort in fulfilling the clinical work of this study.

I wish to thank *Prof. Dr. Saad Saad Hasona* Professor of Anatomy & Embryology, Faculty of Medicine, University of Alexandria, for his great advice and valuable efforts.

CONTENTS

Chapter	Page
1. Introduction	. 1
2. Aim of the work	48
3. Material and Methods	49
4. Results	. 57
5. Discussion	176
6. Summary and Conclusion	200
7. References	203
Protocol	•
Arabic summary	

ABBREVIATION

ASIS Anterior superior iliac spine

Gd Gluteus medius muscle

Gn Gluteus minimus muscle

GT Greater trochanter

Gx Gluteus maximus muscle

IGA Inferior gluteal artery

IP Internal pudendal artery

LCF Lateral circumflex femoral artery

Ld Latissimus dorsi muscle

LS Lateral sacral artery

PF Profunda femoris artery

PSIS Posterior superior iliac spine

SGA Superior gluteal artery

Introduction

INTRODUCTION

Over the last two decades there has been an anatomic renaissance that has seen reconstructive flap surgery escape from the geometric trails of the past. No longer flaps are planned in a random manner or restricted by the length-to-breadth ratios, in the hope that they will encompass in their attached margin significant and sizable vessels.

Instead, flaps whether skin, muscle, tendon, bone or combinations are based usually on known vessels, especially when harvested for microsurgical free transfer.

There has been great advances in flap surgery in the last few decades achieved by a reappraisal of the works of past anatomists, by new studies involving various cadavar dissection, injection, radiographic and corrosion cast techniques; and with the aid of angiography and the doppler ultrasonography in clinical cases. The introduction of tissue expansion, free flap and perforator based flap techniques and revaluation of the anatomic changes that occur sequentially following flap delay have further broadened the scope of flap surgery.

HISTORICAL REVIEW

In 1975, Fujino et al⁽¹⁾ were the first to use gluteal soft tissue as a free flap. Despite the initial enthusiasm and the popularity of the technique, the paucity of publications, limited series of patients and the surgical complexity and complications which have been experienced delayed the wide use of the technique.

In 1977, Mc Craw and Dibell⁽²⁾ stated that the skin, as a rule, is supplied by the perforating vessels arising perpendicularly from the subjacent muscle and that the vessels arborize in perifascial layer to form the plexus around the fascial layer.

Later in the same year, Minami et al⁽³⁾ utilized gluteus maximus myocutaneous flaps for repair of pressure sores.

In 1978, McCraw et al⁽⁴⁾ were successfully able to repair major defects of the chest wall with the latissimus dorsi myocutaneous flap.

In 1980, Bostwick and Scheflan⁽⁵⁾ introduced the reverse latissimus dorsi myocutaneous flap. The blood supply for these flaps is derived from the lumbar arteries.

In 1981, Haertesch⁶ demonstrated by microangiography the presence of a vascular network above the deep fascia in the limbs and suggested that the plexus was nourished by the perforating arteries running through the intermuscular septum. These perforating arteries could nourish only a small area of the skin on account of its fine structure, and a method to obtain a flap by elevating several vessels of

the perforating artery together with the original segmental artery was developed. This was called the septocutaneous artery flap.

In 1982, Ponten⁽⁷⁾ elevated a local flap including the deep fascia in the leg and named it the fasciocutaneous flap.

In 1983, Tolhurst and Haeseker⁽⁸⁾ followed through the Ponten's technique and utilized fasciocutaneous flaps successfully in many clinical applications.

In 1984, Ramirez et al⁽⁹⁾ introduced the sliding gluteus maximums myocutaneous flap for coverage of sacral pressure sores. The gluteal pedicles have a length of 4 cm, so that a medial transposition of muscle mass of about 4 cm is the maximum to be expected. A few years later, the same author commented that the flap is contraindicated when the defect reaches the vicinity of the gluteal pedicles.

In the same year, Lamberty and Cormack⁽¹⁰⁾ found out that some vessels emerging from the intermuscular septum to enter the subcutaneous tissue form a plexus at the level of the deep fascia. They called this the fasciocutaneous system, regarding it as the base for the circulation to the fasciocutaneous flap.

In the first half of the eighties, there has been an abundance descriptions of free myocutaneous flaps based on long, named vessels. Indeed, almost any muscle can become a flap if it has a blood supply that can be surgically isolated as a pedicle.⁽⁷⁾