

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

THE MOST PREVALENT ALLERGENIC AIRBORNE POLLENS AMONG EGYPTIAN PATIENTS WITH RESPIRATORY ALLERGY

Thesis

Submitted for Partial Fulfillment of MD Degree

In Internal Medicine

By

Nada Mohamed Ahmed Noor Al-Din

M.B.B.Ch., M.SC. Ain Shams University

Supervised by

Prof. Dr. Maged Mohammed Refaat

Professor of Internal Medicine - Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

Ass. Prof. Nermine Abd El-Nour Melek

Assistant Professor of Internal Medicine Allergy and Clinical Immunology Faculty of Medicine - Ain shams University

Ass. Prof. Eman Al-Sayed Ahmed

Assistant Professor of Internal Medicine
Allergy and Clinical Immunology
Faculty of Medicine - Ain shams University

Dr. Osama Mohamed Abdel Latif

Lecturer of Internal Medicine - Allergy and Clinical Immunology Faculty of Medicine - Ain shams University

Dr. Manar Farouk Mohamed

Lecturer of Internal Medicine - Allergy and Clinical Immunology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgement

First and foremost, thanks to Allah; the most kind and merciful, providing me the opportunity to step in the world of science and who, giving me the efforts to complete this work.

No words can express my profound thanks and deep gratitude to **Prof. Dr. Maged Mohammed Refaat,** for his guidance and encouragement for me in all stages of this work. I feel deeply indebted to providing great interest in reading and revising the manuscript carefully. He did not spare by his efforts, time or advices so I will not forget that and I will remain grateful to his forever.

My sincere thanks, deep appreciation and gratitude to Assistant Prof. Dr. Nermine Abd El-Nour Melek, for suggestion of the point of work, sincere encouragement and cooperation in offering all facilities throughout this work. She is really kind and active person.

I express my appreciation to **Assistant Prof. Dr. Eman Al-Sayed Ahmed,** for her valuable advice, patience, unlimited assistance, support and kind supervision.

I wish to express my deepest feeling of gratitude to **Dr. Osama Mohamed Abdel Latif**, for the great work he has done for this study, precious guidance and unlimited faithful support.

Also, I would like to thank **Dr. Manar Farouk Mohamed** for the great help that they have done for this study.

My special thanks and appreciation for all **participants and volunteers** who participated in this study.

Nada Mohamed Ahmed

List of Contents

	Title	Page
•	List of Abbreviations	I
•	List of Tables	IV
•	List of Figures	VI
•	Introduction	1
•	Aim of the Work	4
•	Review of Literature	
	- Chapter (1): Respiratory Allergy	5
	- Chapter (2): Pollen allergy	47
•	Subjects and Methods	64
•	Results	76
•	Discussion	97
•	Summary and Conclusion	110
•	Recommendations	112
•	References	000
•	Arabic Summary	

List of Abbreviations

ABPA Allergic broncho-pulmonary aspergillosis

ACE Angiotensin converting enzyme

ACO Asthma and chronic obstructive

pulmonary disease overlap syndrome

AIT Allergen immunotherapy

APC Antigen presenting cell

AR Allergic rhinitis

ARIA Allergic rhinitis and its impact on

asthma

BA Bronchial asthma

BAT Basophil activation test

CD Cluster of differentiation

CS Corticosteroids

CT Computerized tomography

CysLTs Cysteinyl leukotrienes

DCs Dendritic cells

EAACI European academy of allergy and

clinical immunology

ECP Eosinophil cationic protein

FENO Fractional exhaled nitric oxide

FEV1 Forced expiratory volume in 1 second

Fig Figure

FVC Forced vital capacity

GINA

HDM House dust mites

ICAM-1 Intercellular adhesion molecule-1

ICS Inhaled corticosteroids

IgE Immunoglobulin E

List of Abbreviations

IL Interleukin

ILCs Innate lymphoid cells INS Intra nasal steroids

IV Intravenous

LABA Long acting beta agonists

LAMA Long-acting muscarinic antagonist

LAR Local allergic rhinitis

LTP Lipid transfer proteins

LTRA Leukotrienes receptor antagonist NANIR Non-allergic non-infectious rhinitis

NAPT Nasal allergen provocation test

NAR Non- allergic rhinitis

NARES Non-allergic rhinitis with eosinophilia

syndrome

Nitric oxide NO

Oral allergy syndrome OAS ocs Oral corticosteroids

PEF Peak expiratory flow

Pollen-food allergy syndrome **RAST** Radioallergosorbent testing

Risk factors RF

PFAS

RSV Respiratory syncytial virus **SABA** Short acting beta agonists

SC Subcutaneous

subcutaneous immunotherapy SCIT

Specific immunoglobulin E sIgE SLIT Sublingual immunotherapy

List of Abbreviations

SNP.....Single nucleotide polymorphism

SPT....Skin prick test

THT helper

TNFTumor necrosis factor

TSLP.....Thymic stromal lympho-poietin

WHOWorld health organization

List of Tables

Table No.	Title	Page
Table (1):	TYPE 2 Targeted biological therapy31	
Table (2):	For important allergen confamilies involved in cross between aeroallergens are allergens	s-reactivity nd food
Table (3):	(ATS) Grades for Severity Pulmonary Function Tes Abnormality	t
Table (4):	Demographic data of the subjects	
Table (5):	Distribution of the respiratory allergy subjects according to presence of AR/BA or both	
Table (6):	Duration and severity of according to ARIA classif	=
Table (7):	Duration and severity of BA patients according to GINA guidelines	
Table (8):	ble (8): History of Oral Allergy Syndrome (OAS) in respiratory allergy patients 7	
Table (9):	Lab investigations of all subjects	studied 79
Table (10):	Pulmonary function test subjects	
Table (11):	SPT results81	
Table (12):	Cross-reactive food evident by SPT 83	

List of Tables

Table No.	Title	Page
Table (13):	Peaks of the year at whi with allergic respiratory suffer the most from the	diseases
Table (14):	Comparison between AF regard pollen prevalence	
Table (15):	Types of pollens in BA p	oatients86
Table (16):	Types of pollens in AR p	atients87
Table (17):	Comparison between pr different types of pollens urban areas	s in rural vs.
Table (18):	Comparison between crefood and different types	
Table (19):	Comparison between Se and duration of disease	·
Table (20):	Comparison between Se and duration of disease	•
Table (21):	Comparison between Se and types of pollens	•
Table (22):	Comparison between Se and types of pollens	•
Table (23):	Comparison between Se and no. of allergen	•
Table (24):	Comparison between Se and no. of allergens	_

List of Figures

Figure No.	Title Page		
Fig. (1):	Cellular inflammation of BA 12		
Fig. (2):	T2-high and T2-low asthma pathway 17		
Fig. (3):	Stepwise approach for asthma management		
Fig. (4):	Early and late phases showing the pathophysiological processes and drivers of allergic rhinitis and the potential sites for pharmacological intervention		
Fig. (5):	ARIA classification	assification38	
Fig. (6):	Yig. (6): Classification of rhinitis		
Fig. (7): Birch Pollen		50	
Fig. (8): Hazelnut Pollen		50	
Fig. (9): Ragweed Pollen		51	
Fig. (10):	Mugwort Pollen	51	
Fig. (11):	Timothy Grass	52	
Fig. (12):	(12): Time course, pathogenesis, and manifestations of pollen-food allergy syndrome		
Fig. (13):	ARIA pocket guide 2018 66		
Fig. (14):	Classification of asthma severity 67		
Fig. (15):	Normal Pulmonary Function Test waves		
Fig. (16):	Abnormal PFT waves	nal PFT waves71	

List of Figures (Continued)

Figure No.	Title	Page
Fig. (17):	Positive SPT done at our of Shams University	
Fig. (18):	Graph showed the percent different aeroallergens per the SPT including pollens molds and dust mites	rformed in , cat fur,
Fig. (19):	Graph demonstrating the of different pollens among respiratory allergy patient	g S
Fig. (20):	Graph showed that the magnetic prevalent cross-reactive for orange (12%) followed by (11.5%) and soya (11%)	ood was tomato
Fig. (21):	Peaks of exacerbation of rallergy	-
Fig. (22):	Comparison between AR a regard pollen prevalence.	
Fig. (23):	Showed comparison between patients and BA patient and pollen prevalence	is regard
Fig. (24):	Cross reaction between for pollens	

Abstract

Background: Allergy symptoms occur when the immune system overreacts to environmental allergens, such as pollen or dust, which are typically harmless to most individuals but induce a potentially severe reaction to those who are sensitive to them. Pollen is one of the main reasons to cause seasonal allergic respiratory diseases and it is influenced by multiple risk factors.

Objective: To determine the most prevalent types of allergenic pollens by skin prick testing among Egyptian patients with respiratory allergy (asthma and/or allergic rhinitis).

Methods: 200 adult patients, all were subjected to the following: full detailed medical history, clinical examination, asthma severity grading according to the GINA Guidelines, allergic rhinitis severity grading according to ARIA Guidelines, pulmonary Function tests for asthmatic patients. (PFTs), CBC with differential for detection of eosinophilic count, Skin prick testing (SPT) to common environmental allergens and common food allergen.

Results: The present study proved that the grass pollens; timothy grass and maize were the most prevalent pollens among Egyptian respiratory allergy patients.

Conclusion: Difference in results of SPT performed to patients across different countries is explained by the difference in climates, which affects pollination, Egypt is considered to have a dry, desert-like climate in addition to its coastal regions. Our results revealed that both timothy grass and maize pollens were the most prevalent among Egyptian respiratory allergy patients.

Keywords: Allergic Rhinitis, Bronchial Asthma, Pollen, Skin Prick Test

INTRODUCTION

Respiratory allergic airway diseases mainly include allergic rhinitis and bronchial asthma. As regard allergic rhinitis, it is an inflammation in the nasal mucosa characterized by sneezing, nasal itching and discharge. It is an IgE mediated immune reaction characterized by sensitization of mast cells upon exposure to certain allergens and release of multiple allergy mediators; most important of which is histamine. Severe allergic rhinitis has been associated with significant impairments in quality of life, sleep and work performance (*Hasan and Timothy*, 2016).

Bronchial asthma has become widespread and currently affects almost a quarter billion people worldwide with an increasing rate of prevalence. It is a heterogenic, complex, chronic inflammatory and obstructive lung disease, which can be associated with many comorbidities and traditionally, it has been divided into several subtypes (*Heck et al.*, 2017).

The increase in allergies is a phenomenon that is being observed in all developing countries. For a long time, science has taken as a starting point that solely a genetic predisposition is a precondition for the development of an allergy. Today, knowledge of environmental factors that can alter genes or the transcription of genes in the cells, has