

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Quantitative Interpretation of Well Logging and Seismic Data for Reservoir Characterization, Ha'py Field, Ras El Bar Concession, Nile Delta, Egypt.

A Thesis Submitted in Partial Fulfillment of the Requirement for the Master Degree of Science in Geophysics

By Mohammed Sherif Taha Ahmed

B.Sc. in Geophysics (2017)
Faculty of Science - Ain Shams University

To
Geophysics Department
Faculty of Science - Ain Shams University

Supervised By

Dr. Abdullah M.E. Mahmoud

Assistant Professor of Geophysics Geophysics Department - Faculty of Science-Ain Shams University

Dr. Azza Mahmoud Abd El-Latif El-Rawy

Assistant Professor of Geophysics Geophysics Department - Faculty of Science-Ain Shams University

Note

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment of the requirements of the Master degree of Science in Geophysics. Besides the research work materialized in this thesis, the candidate has attended six post-graduate courses for one year in the following subjects:

- 1. Geophysical Field Measurements.
- 2. Numerical Analysis and Computer Programming.
- 3. Petrophysical Properties of Rocks and Advanced Well Logging.
- 4. Formation Evaluation and Reservoir Evaluation.
- 5. Subsurface Geology and Geophysical Prospecting.
- 6. Sedimentary Basin Analysis and Fluid Dynamics.

The candidate has successfully passed the final examinations of these courses. In fulfillment of the language requirement of the degree, the candidate also passed the final examination of a course in the English language.

Head of Geophysics Department
Prof. Dr. Abdel-Khalek M.M. El-Werr

Acknowledgement

Firstly, I want to thank Allah, what was a good deed is from Allah and what was bad is from me.

I would like to express my deep and grateful thanks to **Dr. Abdallah Mahmoud**, Assistant Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for supervising this study, his valuable help and comments, as well as reading and reviewing this manuscript.

I would like to express my deep and grateful thanks to **Dr. Azza El-Rawy**, Assistant Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for the supervision, support needed for this study, reading and reviewing the manuscript.

I would like to express my sincere thanks to **Dr. Abdel-Khalek M.M. El-Werr**, Head of Geophysics Department, Faculty of Science, Ain Shams University for his valuable support and encouragement.

I would also like to thank **Aya Fawzi**, geophysicist in the Egyptian Petroleum Corporation, and **Ahmed Ali**, mud logger in Petro Service, for their valuable help through this work.

I also thank EGPC Information Center (Egyptian General Petroleum Corporation) for providing the data used in the study.

I would like to express the deep sense of gratitude towards my father, my mother, my sister and my brother for their patience, fortitude and understanding. Their love and devotion kept me going and I am extremely grateful to them for their encouragement and support.

Abstract

The offshore Nile Delta is one of the most promising areas for gas exploration and production in Egypt and the Middle East where proven reservoirs within Nile Delta cone vary in age from Oligocene to Pleistocene. The area of study is Hapy Field which lies in Ras El Barr concession approximately 40 km from offshore eastern Nile Delta in 80 m of water. It is the largest field yet discovered in the Pliocene trend.

The gas reserves of Hapy Field are contained in sandstone reservoir units within the Pliocene Kafr El-Sheikh Formation. The main purpose of this study is to delineate the lateral and vertical extension of the sand reservoir units, discriminate between the gas-bearing sandstone, brine sandstone and shale, distinguish between Base and Base Gas of the main sand unit of A20 and estimate the gas reserve of the A20 reservoir unit.

This study includes petrophysical evaluation of six wells (H-1, H-2-ST-2, H-4, H-7, H-7-ST and H-8) distributed in Hapy Field and interpreting seismic data for A20 reservoir unit.

Well logging analysis led to the following observations; the main sand unit of A20 exists in all wells with optimum thickness, effective porosity and hydrocarbon saturation values. The A20 sand unit is deposited in sand bar shape in shallow marine depositional environment. In addition to A22, A24 and A30 sand members existing in few wells with optimum reservoir properties.

Analysis of MDT pressure data shows that, the gas-bearing sand members of H-1 well are isolated while those of H-8 well are vertically connected. The analysis of the multi-well pressure depth plot shows that, there is no horizontal connectivity between the sand units of H-1 and H-8 wells due to producing from two sand bars isolated by a geological barrier (permeability barrier of shales).

Seismic interpretation was performed on Top, Base gas and Base of A20 reservoir. Time and depth maps show that, A20 reservoir is trapped in a tilted fault block between two major listric growth faults with NE-SW and NW-SE trends down-throwing toward the north. A20 sand is also dissected by two minor faults trending WNW-ESE which splay from the major NE-SW fault.

Various types of seismic attributes (3D amplitude auto-tracking, spectral decomposition, RGB color blending and geobody extraction) show the lateral and vertical extension of the gas-bearing sand units and illustrate that, the gas-bearing sand bars are trending toward the west. The gas reserve of A20 reservoir was estimated using the volumetric method, utilizing the average values of the petrophysical evaluation results, reservoir engineering

parameters and the area of the geobody extracted from the RGB color blending, yielding 2.527 TCF of gas.

Rock physics analysis was performed by cross-plotting seismic elastic properties and petrophysical properties to effectively discriminate between gas-bearing sandstone, brine sandstone and shales. It's noticed that, Poisson's impedance is the most efficient attribute to discriminate between different lithologies and fluid content.

Model-based inversion was found to be the most accurate poststack inversion method yielding inverted P-impedance. Then reservoir properties volumes (shale volume, effective porosity and hydrocarbon saturation) were derived from the inverted P-impedance and predicted using PNN. It's noticed that, prediction using PNN gives more accurate results. Then horizon slices were created through the inverted P-impedance and these reservoir properties volumes to clearly discriminate between gas-bearing sandstone, brine sandstone and shale.

Keywords: Hapy Field, Well logging, Seismic attributes, Gas reserve, Rock physics, Model-based inversion and PNN.

List of Contents

Subject	Page
	no.
Acknowledgement	
Abstract	
List of Contents	I
List of Figures	VII
List of Tables	XVI
Introduction	1
I. The Study Area	1
II . Exploration History	2
III. Objectives and Procedures	4
IV. Available Data	6
Chapter 1: Regional Geologic Setting	7
1.1 Introduction to Geologic Setting	7
1.2 Regional Stratigraphy of Nile Delta	8
1.2.1 Pre-Cambrian	9
1.2.2 Paleozoic	10
1.2.3 Mesozoic	10
1.2.3.1 Triassic	11
1.2.3.2 Jurassic	11
1.2.3.3 Cretaceous	12
1.2.3.3.1 Early Cretaceous	12
1.2.3.3.2 Late Cretaceous	13
1.2.4 Cenozoic	13
1.2.4.1 Paleogene	14
1.2.4.1.1 Paleocene	14
1.2.4.1.2 Eocene	14
1.2.4.1.3 Oligocene	14
1.2.4.2 Neogene	15
1.2.4.2.1 Miocene	15
1.2.4.2.2 Pliocene	18
1.2.4.3 Quaternary	19
1.3 Regional Structural Setting of North Nile Delta	21
1.3.1 Hinge Zone	22
1.3.2 Rosetta Fault	23
1.3.3 Temsah Fault	23

1.3.4 East-West Faults	24
1.3.5 The Pelusium Megashear Structural Trend	25
1.3.6 Minor Fault Trends	27
1.4 Tectonic Evolution of Nile Delta	27
1.5 Stratigraphic Setting and Depositional Model of Hapy Field	34
1.5.1 Stratigraphic Setting of Hapy Field	34
1.5.2 Hapy Field Depositional Model	36
1.6 Tectonic and Structural Evolution of Hapy Field	37
1.7 Petroleum System of Hapy Field	38
Chapter 2: Petrophysical Study Using Well Log Analysis	40
2.1 Introduction	40
2.2 Available Data	41
2.3 Core Analysis	42
2.3.1 Core Description	42
2.3.2 Hydraulic Flow Unit (HFU)	44
2.3.2.1 Winland R35 Method	44
2.4 Well Logs Quality Control	46
2.5 Petrophysical Properties Evaluation	48
2.5.1 Data Editing	48
2.5.2 Zonation	48
2.5.3 Formation Temperature Determination	50
2.5.4 Correction of Rmf, Rmc and Rm resistivities	50
2.5.5 Determination of Shale Volume (V _{sh})	51
2.5.5.1 Field Well Log Parameters	51
2.5.5.2 Well Log Parameters	51
2.5.5.3 Single Curve Shale Indicator (Gamma Ray Method)	52
2.5.5.4 Double Curve Shale Indicator (NPHI-RHOB Method)	52
2.5.6 Formation Porosity Determination	53
2.5.6.1 Total Porosity (ϕ_T)	53
2.5.6.1.1 Total Porosity Using Density Log (φ _D)	55
2.5.6.1.2 Total Porosity Using Sonic Log	55
2.5.6.1.3 Total Porosity Using Neutron and Density Logs	55
2.5.6.1.4 Total Porosity Using Neutron and Sonic Logs	56
2.5.6.2 Effective Porosity (ϕ_{eff})	57
2.5.6.2.1 Effective Porosity Using Density Log	57
2.5.6.2.2 Effective Porosity Using Sonic Log	57
2.5.6.2.3 Effective Porosity Using Neutron and Density Logs	58
2.5.6.2.4 Effective Porosity Using Neutron and Sonic Logs	59
2.5.7 Formation Water Resistivity Estimation (Rw)	59

2.5.7.1 The Theory of Pickett's Plot	61
2.5.8 Fluid Saturation Determination	63
2.5.8.1 Water Saturation Determination in the Uninvaded Zone (Sw)	63
2.5.8.1.1 Archie Equation	63
2.5.8.1.2 Dual Water Model	63
2.5.8.1.3 Indonesia Model	64
2.5.8.2 Water Saturation Determination in the Flushed Zone (Sxo)	64
2.5.8.2.1 Archie Equation	65
2.5.8.2.2 Dual Water Model	65
2.5.8.2.3 Indonesia Model	65
2.5.8.3 Determination of Hydrocarbon Saturation (Sh)	66
2.6 Pressure System Evaluation	74
2.6.1 Hydrostatic Pressure Analysis	74
2.6.2 Pressure Testing	75
2.6.2.1 Repeat Formation Tester	75
2.6.2.2 Modular Dynamic Formation Tester (MDT)	75
2.6.3 Pressure Regime of Hapy Field	76
2.6.4 Analysis of Pressure Depth Plots	78
2.6.4.1 Single Pressure Depth Plot of H-1 Well	78
2.6.4.2 Single Pressure Depth Plot of H-8 Well	79
2.6.4.3 Multi-Well Pressure Depth Plot of H-1 and H-8 Wells	81
Chapter 3: Identification of Lithology	82
3.1 Introduction	82
3.2 Identification of Lithology Using Crossplots	82
3.2.1 Neutron-Density (NPHI-RHOB) Crossplot	83
3.2.2 RHOB-Pef Crossplot	89
3.2.3 Mineral Identification Crossplot (M-N Plot)	90
3.2.4 Matrix Identification Crossplot (MID Plot)	95
3.3 Litho-Saturation Crossplots	99
3.4 Iso-Parametric Mapping of Petrophysical Parameters	107
3.4.1 A20 Iso-Parametric Maps	108
Chapter 4: Seismic Data Interpretation and Seismic Attributes	113
4.1 Introduction	113
4.2 Available Data	114
4.3 Seismic Data Description	115
4.3.1 Acquisition Parameters of Individual Azimuths	116
4.3.2 Processing Sequence of MAZ Seismic Survey	118
4.4 Quality Control of Seismic Data	119

4.5 Work Flow	122
4.5.1 Well-to-Seismic Tie	122
4.5.1.1 Time-Depth Charts	123
4.5.1.2 Synthetic Seismogram Generation	126
4.5.2 Seismic Features of A20 Reservoir	131
4.5.2.1 Bright Spot and Flat Spot	131
4.5.2.2 Polarity Reversal	132
4.5.2.3 Velocity Push-Down	133
4.5.2.4 Shallow Gas Attenuation Effect	133
4.5.2.5 Artificial Flat Spots	134
4.5.3 Seismic Data Interpretation	135
4.5.3.1 Seismic Interpretation Technique	136
4.5.4 Constructing and Interpreting the Seismic Contour Maps	141
4.5.4.1 Time Structural Contour Maps	141
4.5.4.2 Depth Structural Contour Maps	144
4.5.4.3 Thickness Contour Maps	148
4.5.4.3.1 Isochron Maps	149
4.5.4.3.2 Isopach Maps	150
4.6 Seismic Attributes	152
4.6.1 Introduction	152
4.6.2 3D Amplitude Auto-Tracking	153
4.6.3 Estimation of Spectral Decomposition Attributes	155
4.6.3.1 The Spectral Decomposition Workflow and Technical	156
Description	130
4.6.3.2 Methodology of Spectral Decomposition	159
4.6.4 Composite Frequency Image (RGB Blending)	166
4.6.5 Geobody Extraction	174
4.7 Hydrocarbon Reserve Estimation	176
4.7.1 Volumetric Method	178
Chapter 5: Rock Physics Analysis	182
5.1 Introduction	182
5.2 Seismic Rock Properties	183
5.2.1 Basic Rock Properties	183
5.2.2 Elastic Rock Properties	185
5.2.3 Anisotropic Properties	188
5.3 Crossplot Analysis	189
5.3.1 Basic Rock Properties Versus Elastic Rock Properties	190
5.3.2 Petrophysical Rock Properties Versus Petrophysical Rock	198
Properties	170

5.3.3 Basic Rock Properties Versus Basic Rock Properties	
5.3.4 Elastic Rock Properties Versus Elastic Rock Properties	
5.3.5 Poisson's Impedance Versus Petrophysical Roch Properties	
5.4 Conclusion	242
Chapter 6: Lithology-Fluid Discrimination by Using Seismic Inversion and Artificial Neural Networks	248
6.1 Seismic Inversion	248
6.2 Poststack Seismic Inversion	251
6.2.1 Theories of Poststack Seismic Inversion	251
6.2.1.1 Convolution Model of Seismic Trace	251
6.2.1.2 Reflection Coefficient	252
6.2.1.3 Seismic Wavelet	253
6.2.1.3.1 Minimum Phase Wavelet	254
6.2.1.3.2 Ricker Wavelet	254
6.2.1.4 Noise Component	255
6.2.2 Basic Inversion Methodology	256
6.2.2.1 Wavelet Extraction	257
6.2.2.1.1 Statistical Wavelet	258
6.2.2.1.2 Deterministic Wavelet	259
6.2.2.2 Initial Model	262
6.2.3 Inversion Analysis	264
6.2.3.1 Model-Based Inversion	265
6.2.4 Applications on Poststack Inversion	269
6.2.4.1 Deriving Shale Volume from the Inverted P-Impedance	271
6.2.4.2 Deriving Effective Porosity from the Inverted P-Impedance	273
6.2.4.3 Deriving Hydrocarbon Saturation from the Inverted P- Impedance	276
6.3 Artificial Neural Network	278
6.3.1 Introduction	278
6.3.2 Theoretical Background of Neural Network	279
6.3.3 Neural Network Applications	280
6.3.4 Classification of Artificial Neural Networks (ANNs)	281
6.3.4.1 Supervised Neural Networks (SNNs)	281
6.3.4.2 Unsupervised Neural Networks (UNNs)	282
6.3.5 Neural Network Workflow in the Study Area	282
6.3.6 Petrophysical Prediction Result	284
6.3.6.1 Effective Porosity (PHIE) Prediction	284
6.3.6.1.1 Prediction Using Single Attribute	285
6.3.6.1.2 Prediction Using Multi-Attribute	287
6.3.6.1.3 Prediction Using Probabilistic Neural Network (PNN)	290
6.3.6.2 Shale Volume (V _{sh}) Prediction	292

6.3.6.2.1 Prediction Using Single Attribute	293
6.3.6.2.2 Prediction Using Multi-Attribute	295
6.3.6.2.3 Prediction Using Probabilistic Neural Network (PNN)	297
6.3.6.3 Hydrocarbon Saturation (Sh) Prediction	299
6.3.6.3.1 Prediction Using Single Attribute	300
6.3.6.3.2 Prediction Using Multi-Attribute	302
6.3.6.3.3 Prediction Using Probabilistic Neural Network (PNN)	304
Summary and Conclusions	307
References	312
الملخص العربي	

List of Figures

	Figure	Page no.
Figure (I):	(A) Index map of the Nile Delta, Egypt. (B) Location of Hapy Field, offshore	2
	Nile Delta (SENV, 2007).	2
Figure (1.1):	Location map of Nile Delta sub-basins (modified after BP internal report,	8
_	2004).	ð
Figure (1.2):	Stratigraphic column of Nile Delta, showing the main hydrocarbon source,	
	reservoir and seal rocks (EGPC, 1994).	9
Figure (1.3):	Stratigraphic model of Neogene-Quaternary section in Nile Delta (EGPC,	
	1994).	21
Figure (1.4):	Major structural pattern of Eastern delta area (modified after Abdel-Aal et	
	Al., 2001). (A) Location map of delta area and Hapy Field. (B) crustal	
	structures underneath delta area.	24
Figure (1.5):	Geologic features of delta and its deep-water area (modified after Abdel-Aal	
	et al., 2001). (A) The hinge line forms the boundary of thick Tertiary	26
	deposits. (B) B-C-B' cross section, (C) B-C-C' cross section.	
Figure (1.6):	Geodynamic framework of Eastern Mediterranean. Grey arrows show	
	relative plate movements (modified after Loncke et al., 2006).	28
Figure (1.7):	Tectonic movements and their relations with tectonic events in Gulf of Suez,	
	Nile Delta and Mediterranean Sea (El-Gamal and El-Bosraty, 2008).	29
Figure (1.8):	Interpreted basement lineaments and crustal distribution associated with	
	opening of East Mediterranean Basin (EMB) (modified after Bentham et al,	30
T1 (1.0)	2007).	
Figure (1.9):	Tectono-stratigraphic column of Nile Delta. The diagram illustrates onshore	
	to offshore stratigraphic pattern from Western Desert to deep water Nile	22
E' (1.10)	Delta (Dolson et al., 2005).	33
	Stratigraphic setting of Hapy Field (Freeman and Gunter, 1998).	35
Figure (1.11):	Xline 2172 seismic section shows the chaotic channel geometries, top sand	26
E: (1.12).	sheet and stacked sand bars of A20 reservoir.	36
Figure (1.12):	A schematic diagram shows the depositional model of A20 reservoir (BP	37
Figures (1.12).	internal report, 2010).	
Figure (1.13):	Regional and stratigraphic framework of Hapy Field (Dolson, 2020).	20
Figure (2.1).	Schematic cross-section of hydrocarbon plays in Nile Delta.	38 41
Figure (2.1):	Well distribution base map with well trajectory of Hapy Field.	41
Figure (2.2):	Thin section of a core through A22 reservoir in H-4 well at a depth of 2789	12
Figure (2.2).	m (BP internal report, 1997).	43
Figure (2.3): Figure (2.4):	Kh-CBW relation for core data in H-4 well. The Winland P35 perceity permeability plot for A22 receive unit core data.	44
Figure (2.4):	The Winland R35 porosity-permeability plot for A22 reservoir unit core data in H-4 well.	46
Figure (2.5):		47
Figure (2.5): Figure (2.6):	QC plot clarifying the washed-out section (inside the blue circle) in H-1 well Petrophysical zonation and stratigraphic correlation along profile A-B with	4/
Figure (2.0):	the base map.	49
	the ouse map.	
L		