

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Phytochemical and Biological Studies on Certain Plants Belonging to Family Fabaceae

A Thesis Submitted

In Partial Fulfilment of the Requirements

for the Degree of Doctor of Philosophy in Pharmaceutical Sciences

(Pharmacognosy)

By

Nouran Mohammed Mohammed Fahmy

B. Pharm. Sci., 2011 M. Pharm. Sci., 2015 Faculty of Pharmacy, Ain Shams University

Under the Supervision of

Prof. Dr. Abdel-Nasser Badawy Singab

Professor of Pharmacognosy
Vice President of Ain Shams University for Postgraduate Studies
Chairman of the Center for Drug Discovery, Research and Development
Ain Shams University

Dr. Mohamed Mahmoud El-Shazly

Dr. Eman Mohamed Kamal

Associate Professor of Pharmacognosy
Faculty of Pharmacy
Ain Shams University

Associate Professor of Pharmacognosy Faculty of Pharmacy Ain Shams University

Department of Pharmacognosy Faculty of Pharmacy Ain Shams University Abbasia, Cairo, Egypt 2020

ACKNOWLEDGEMENT

First of all, I would like to extend due praise and thanks to **ALLAH**, the source of all knowledge, and may His peace and blessings be upon all his prophets; for granting me the chance and the ability to successfully complete this study.

I would like to express my deepest gratitude, sincere, and profound appreciation to many people who helped me in this work, it is a pleasant aspect that I have now the opportunity to express my gratitude for all of them.

I would like to express my profoundest gratitude to my thesis advisors; Professor Abdel-Nasser B. Singab, Professor of Pharmacognosy, Vice President of Ain Shams University for Postgraduate Studies, for his expert guidance, valuable advice, and his comprehensive and sincere support. Thanks for his precious time, valuable advices, and insightful comments. I am really grateful for his continuous follow up of research work, his sincere comments that engage me in new ideas and enlighten my perspective in research work. Thanks for his constructive suggestions, valuable corrections, and addition to the research work, manuscripts, and the thesis. His enthusiasm, encouragement, and faith in me throughout have been extremely helpful. Without his precious support it would not be possible to conduct this research. It was my great privilege and honor to work under his expert guidance.

I am very thankful to Associate Professor Mohamed Mahmoud El-Shazly, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University. Thanks for his faith in me. His enthusiasm and motivation deeply inspired and encouraged me to do my best and meet his expectation. Thanks for his support at various phases of the research work. I am really indebted for his valuable suggestions, concise comments, and revision of the work, manuscripts and the thesis. Thanks for his continuous support and efforts at various phases of the research work that demand a high quality of work in all my endeavors.

I am also very grateful to Associate Professor Eman Mohamed Kamal, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University. Her dynamism, dedication, and support were extremely unique and helpful. I am sincerely grateful for her sharing illuminating views on several issues in the thesis, thanks for her efforts in the revision of manuscript and thesis. I am thankful for her great efforts in the peptic ulcer project. Thanks for her continuous efforts for her sincere guidance and advice that helped me in all the time of research and writing of this thesis.

I would like to thank **Doctor Haidy Effat**, Department of Pharmacology, Faculty of Pharmacy, Ain Shams University, for her cooperation in measuring the gastroprotective activity. I am also indebted to **Professor Mei-Chin Lu**, Graduate Institute of Marine Biotechnology, National Dong Hwa University, Taiwan for measuring the cytotoxic activity and **Doctor Saad Moghannem**, Department of Botany and Microbiology, Faculty of Science, Al-Azhar university, for measuring the antibacterial and antiviral activities.

This work was made possible by the availability of the most recent and advanced lab facilities and equipment at the Center for Drug Discovery, Research and Development, Faculty of Pharmacy, Ain Shams University. I am really grateful to Professor Abdel Naser B. Singab the founder and chairman of the center, for his continuous effort in providing us with all necessary research facilities needed for performing research and offering all the facilities in the center to perform the research work in this thesis. I would like also to thank the research sector of Ain Shams University (2016-R) for providing partial fund of the in vivo gastroprotective study performed in the thesis.

I would like to express my sincere gratitude to members of Pharmacognosy Department; my Professors and Doctors, thanks for their continuous support, education and useful tips. My colleagues and friends, thanks for their support and encouragement all the time. My lab mates' thanks for the stimulating discussions, for the hard time we spent in the lab, for the inspiring and motivating atmosphere they created. My sincere appreciation to Dr. Ahmed Essam, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University for his efforts in NMR measurements and his valuable advice. Thank you my department for providing a very warm environment and being my family in University. You provided a friendly and cooperative atmosphere at work.

Finally, to my beloved family; my dearest great parents and my adorable grandmother, I would like you to know that you are all my inspiration and motivation for everything, thank you for supporting me and allowing me to follow my ambitions throughout my childhood, thank you for letting me the person I am today, without your endless support, enduring love, motivation, and encouragement, I couldn't have made it so far. I am really thankful to my brother Youssef for his support and for my sister Yassmin for her love, encouragement, and continuous care. I would like to share this moment of happiness with them.

Nouran M. M. Fahmy Cairo, 2019

CONTENTS

Co	ontents
Lis	st of Abbreviations
Lis	st of Tables
Lis	st of Figures
Lis	st of Photos
Lis	st of Schemes
Int	troduction
Re	view of Literature
Ta	xonomy
Ma	aterials, Apparatus, and Methods
1.	Materials
	1.1. Plant material
	1.2. Materials for the phytochemical investigation of <i>E. crista-galli</i> leaves and <i>E.</i>
	speciosa var. Rosea leaves and flowers
	1.3. Materials for the biological investigation of <i>E. speciosa</i> var. Rosea leaves
	and flowers
2.	Apparatus
	2.1. General apparatus.
	2.2. Chromatographic apparatus
	2.3. Spectroscopy apparatus
3.	Methods
	3.1. Methods for the phytochemical investigation of E. speciosa var. Rosea
	leaves and flowers
	3.2. Methods for the biological investigation of <i>E. speciosa</i> var. Rosea leaves

	1.2. Solvent fractionation of E. speciosa var. Rosea and E. crista-galli leaves
	extract and preliminary chromatographic studies
2	. Phytochemical studies on E. speciosa var. Rosea leaves and flowers
	2.1. Phytochemical screening of <i>E. speciosa</i> var. Rosea flowers
	2.2. Solvent fractionation of <i>E. speciosa</i> var. Rosea leaves and flowers extracts and
	preliminary chromatographic studies
	2.3. Chemical investigation of the dichloromethane soluble fraction of <i>E. speciosa</i>
	var. Rosea leaves methanol extract (ESLDF)
	Isolation and structural elucidation of the main compounds of the
	dichloromethane soluble fraction of E. speciosa var. Rosea leaves methano
	extract (ESLDF)
	2.3.1. Fraction ESLDF II
	Isolation of compound 1
	Identification of compound 1(genistein)
	2.3.2. Fraction ESLDF-III.
	Isolation of compound 2
	Identification of compound 2 (lupiwighteone)
	Isolation of compound 3
	Identification of compound 3 (chrysoeriol)
	2.3.3. Fraction ESLDF-IV
	Isolation of compounds 4 and 5
	Identification of compound 4 (daidzein)
	Identification of compound 5 (protocatechuic acid methyl ester)
	2.3.4. Fraction ESLDF VI
	Isolation of compounds 6 and 7 (mixture)
	Tentative identification of compounds 6 and 7 (β -sitosterol β -D-
	glucoside and β -stigmasterol β -D-glucoside)
	2.3.5. Fraction ESLDF-VII
	Isolation of compound 8 (arrestring)
	Identification of compound 8 (erysotrine)
	Isolation of compound 9 (New Natural Product)
	Identification of compound 9 (11 α -Hydroxy erysotrine-8 β -methyl

acetate)
2.3.6. Fraction ESLDF-VIII.
Isolation of compound 10.
Identification of compound 10 (11-α-Hydroxyerysotrine)
2.3.7. Fraction ESLDF-IX.
Isolation of compound 11
Identification of compound 11 (erybidine)
2.4. Chemical investigation of the ethyl acetate soluble fraction of E. speciosa van
Rosea leaves methanol extract (ESLEF)
2.4.1. HPLC-ESI/MS/MS and HPLC-PDA profiling of the ethyl acetate
soluble fraction of E. speciosa var. Rosea leaves methanol extrac
(ESLEF)
Identification of ESLEF constituents by HPLC-ESI/MS/MS and
HPLC-PDA
2.4.2. Isolation and structural elucidation of the major compounds of the ethy
acetate soluble fraction of E. speciosa var. Rosea leaves methano
extract (ESLEF)
2.4.2.1. Fraction ESLEF-IV.
Isolation of compound 12
Identification of compound 12 (vitexin)
2.5. Chemical investigation of the dichloromethane soluble fraction of E. speciosa
var. Rosea flowers methanol extract (ESFD
Isolation and structural elucidation of the main compounds of E. speciosa van
Rosea flowers
2.5.1. Fraction ESFD-II
Isolation of compound 13 (Erysotrine)
Identification of erysotrine
2.5.2. Fraction ESFD-V
Isolation of compound 14
Identification of compound 14 (erysotrine <i>N</i> -oxide)

	Page
CHAPTER (2)	
Biological investigation of <i>E. speciosa</i> var. Rosea Andrews (Fabaceae)	145
1. In vitro biological activity	146
1.1. Cytotoxic activity	146
1.2. Antibacterial activity	147
1.3. Antiviral activity	153
2. In vivo gastroprotective activity	156
2.1. In vivo gastroprotective pilot study of E. speciosa var. Rosea leaves	
fractions	156
2.2. Acute toxicity study on ESLEF	156
2.3. In vivo gastroprotective activity of the ethyl acetate soluble fraction of E.	
speciosa var. Rosea leaves methanol extract (ESLEF)	157
General Summary	174
Conclusion and Recommendations	180
References	181
Arabic Summary	

LIST OF ABBREVIATIONS

ALP	Alkaline phosphatase		
ALT	Alanine aminotransferase		
AMPK	Human prostate cancer cell line		
ANOVA	Analysis of variance		
APT	Attached proton test		
AST	Aspartate aminotransferase		
ATCC	American type culture collection		
BC	Lymphoma cell line		
brd	Broad doublet		
bw	Body weight		
Caco2	Colorectal adenocarcinoma cells		
CCRF-CEM	T lymphoblastoid cell line		
CD ₃ OD	Deuterated methanol-d ₄		
COSY	Correlation spectroscopy		
Cox B4	Coxsackie B4		
COX-1/COX-2	Cyclooxygenase enzyme 1/2		
DCM	Dichloromethane		
DGAT	Diglyceride acyltransferase		
DPPH•	2,2-diphenyl-1-picrylhydrazyl radical		
EC50	Effective concentration by 50%		
ECLB	Erythrina crista-galli leaves butanol fraction		
ECLD	Erythrina crista-galli leaves dichloromethane fraction		
ECLE	Erythrina crista-galli leaves ethyl acetate fraction		
ECLH	Erythrina crista-galli leaves hexane fraction		
ELISA	Enzyme linked immunosorbent assay		
ΕR α/β	Estrogen receptors α/β		
ERE	Estrogen response element		
	Extracellular signal regulated kinase/mitogen activated protein		
ERK/MAPK	kinase		
ESFBF	Erythrina speciosa flowers butanol fraction		
ESFDF	Erythrina speciosa flowers dichloromethane fraction		
ESFEF	Erythrina speciosa flowers ethyl acetate fraction		
ESFHF	Erythrina speciosa flowers hexane fraction		
ESI	Electrospray ionization		
ESLBF	Erythrina speciosa leaves butanol fraction		
ESLDF	Erythrina speciosa leaves dichloromethane fraction		
ESLEF	Erythrina speciosa leaves ethyl acetate fraction		
ESLHF	Erythrina speciosa leaves hexane fraction		
FBS	Fetal bovine serum		
GSH	Glutathione		
HAV	Hepatitis A virus		
HCT116	Human colorectal carcinoma cell lines		
HDL	High density lipoprotein		
HeLa	Human cervical carcinoma cell lines		
HepG2	Human hepatocellular liver carcinoma cell line		

hGLO I	Human glyoxalase I		
HIV	Human immunodeficiency virus		
HL-60	Human promyelocytic leukemia cells		
HMBC	Heteronuclear multiple bond correlation		
HMG-CoA	B-hydroxy β-methylbutyryl-coenzyme A		
HPLC	High performance liquid chromatography		
HSP	Heat shock protein		
HSQC	Heteronuclear single-quantum correlation		
HSV 1	Herpes simplex virus type 1		
i.p	Intraperitoneal		
IC ₅₀	Inhibitory concentration by 50%		
ID	Internal diameter		
IL	Interleukin		
INF	Interferon		
iNOS	Inducible nitric oxide synthase		
K-562	Human immortalized myelogenous leukemia cell line		
KB	Human epidermoid carcinoma		
LDH	Lactate dehydrogenase		
LDL	Low density lipoprotein		
LNCaP	Androgen-sensitive human prostate adenocarcinoma cells		
LOX	15-lipoxygenase		
LPS	Lipopolysaccharide		
MCF7	Human breast adenocarcinoma cell line		
MDA	Malondialdehyde		
MDA-MB-231	Human breast carcinoma cell lines		
MIC	Minimum inhibitory concentration		
MNTC	Maximum non-toxic concentration		
MNTC	Maximum nontoxic dose		
MOLT-4	Acute lymphoblastic leukemia cell line		
MRC 5	Medical research council cell strain 5		
MRSA	Methicillin resistant Staphylococcus aureus		
MTT	Microculture tetrazolium assay		
MTX	Methotrexate		
nAChRs	Nicotinic acetylcholine receptors		
NCI-H187	Small cell lung carcinoma cell lines		
NFF	Human neonatal foreskin fibroblast		
NF-κB	Nuclear factor kappa B		
NO	Nitric oxide		
OVX	Ovariectomized rats		
PC	Paper chromatography		
PC3	Human prostate cancer cell line		
PDA	Photodiode array		
PGE ₂	Prostaglandin E ₂		
PLA2	Phospholipase A2		
PTFE	Polytetrafluoroethylene Teflon		
PTP1B	Protein tyrosine phosphatase 1B		
RBA	Receptor binder affinity		
RPMI	Roswell Park Memorial Institute medium		

TCID	Tissue culture infectious dose		
TNF-α	Tumor necrosis factor alpha		
TPA	12-O-tetradecanoylphorbol-13-acetate		
TQD	Triple quadrupole mass spectrometry		
TRAIL	Tumor necrosis factor (tnf)-related apoptosis-inducing ligand		
U2OS	Human bone osteosarcoma epithelial cells		
U87MG	Glioblastoma cell line		
VLC	Vacuum liquid chromatography		
VLDL	Very low-density lipoprotein		
VRE	Vancomycin-resistant enterococcus		
VRSA	Vancomycin-resistant Staphylococcus aureus		