

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

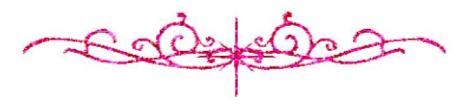
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

بعض الوثائق

الأصلية تالفة



بالرسالة صفحات

لم ترد بالأصل

B 16559

STRUCTURAL INVESTIGATIONS OF FLUORIDE GLASSES

A THESIS

Submitted for the Degree of Doctor of Philosophy in Solid State Physics to Physics Department,
Faculty of Science, Menoufia University, Egypt

By

IBRAHIM ZAKY EL-SAYED HAGER

M. Sc. (Solid State Physics)

SUPERVISED BY

- 1 Prof. Dr. Marcel Poulain,
 Director of Lab. Mater. Photoniques, .
 University of Rennes 1, France.
- 2 Prof. Dr. M. A. Ewaida, Physics Department, Faculty of Science, Menoufia University, Egypt.
- 3 Prof. Dr. R. A. El-Mallawany, Physics Department, Faculty of Science, Menoufia University, Egypt.
- 4 Dr. A. H. Khafagy, Assist. Prof. Physics Department, Faculty of Science, Menoufia University, Egypt.

Allegia

M.A. Ewaida

4. H. Klicfagy

ACKNOWLEDGMENTS

The author is deeply indebted to Prof. Dr. Marcel Poulain, director of Lab. Mater. Photoniques, University of Rennes 1, France, for his kind supervision, suggesting the problem and kind help during carrying out the research work, stimulating discussion and encouragement. He Sincerely expresses his deep gratitude to Prof. Dr. R. El-Mallawany, Physics Department, Faculty of Science, Menoufia University, Egypt, for his supervision, suggesting the problem and kind help during carrying out the research work, stimulating discussion and encouragement.

The author also expresses his deep thanks to prof. Dr. M. A. Ewaida Physics Department, Faculty of Science, Menoufia University for his supervision, valuable suggestions and kind help during carrying out the research work, stimulating discussion and encouragement. He wishes to offer his gratitude to Dr. A. H. Khafagy, Assist. Prof., Physics Department, Faculty of Science, Menoufia University, Egypt for his supervision, valuable suggestions and kind help during carrying out the research work, stimulating discussion and encouragement. He also wishes to offer his gratitude to Dr. Michel Poulain, Labo. Mater. Photoniques, Univ. of Rennes 1, France for kind help and facilities during carrying out the glass preparation of this work, also for Dr. Marc Matecki, Labo.of Ceram. and Glasses, Univ. of Rennes 1, France for kind help and facilities during carrying out the specific heat measurements of the present glasses.

Many thanks are due to Lab. Physics (Spectra Lab.), Univ. of Rennes 1, France for kind help and facilities during carrying out the measurements of Raman and Brillouin Scattering. The auther, wishes to offer his thanks to all the members of the Labo. of Mater. Photoniques, Univ. of Rennes 1, France and all the staff members of physics Department, Faculty of Science, Menoufia Univ., Egypt for their kind cooperation.

MY Dear Parent,

My Love Wife Hala

and

My Daughters, Hadil and Iman

CONTENTS

Acknowledgments

APTER 1	Introduction	
1.1	Glass Formation Behaviour of Halides	
1.2	Glass Forming Systems	
1.2.1	Fluoroberyllates	
1.2.2	Fluorozirconates	
1.2.3	Transition Metal Fluoride Glasses	
1.2.4	Miscellaneous Fluoride Glasses	·
1.2.5	Fluorophosphate and Oxyfluoride Glasses	• • • • • • • • • • • • • • • • • • • •
1.3	The Coordination number and	
	Neutralization of Electric Valence	
1.4	General Rules for Glass Formation	1
1.5	Structure of Fluoride Glasses	1
1.6	Physical Properties of The Fluoride Glasses	1
1.6.1	Thermal Properties	
1.6.1.1	Glass Transition Temperature	
1.6.1.2	2 Thermal Expansion Coefficient	
1.6.1.3	Specific Heat	
1.6.2	Density and Molar Volume	
1.6.3	Optical Properties	
1.6.3.1	Refractive Index	2
1.6.3.2	Infrared Spectra	2
1.6.3/3	3 Ultraviolet Absorption	2
1.6.4	Raman Scattering	3
1.6.5	Brillouin Scattering	3
1.7	Aim of the present work	4
	2 Experimental Technique of Measureme	

2.	_	Measurements45			
2.	2.1	DSC measurements45	,		
2.	2.2	Thermal Expansion Coefficient47			
2.	2.3	Specific Heat47			
2.	2.4	Density48			
2.	2.5	Refractive Index49			
2.	2.6	UV_Measurements50			
2.	2.7	Infrared Measurements50			
2.	3	Light Scattering Spectroscopy51			
2.		Raman Spectroscopy52			
2.	3.2	Brillouin Spectroscopy54	•		
CHAPTI	ER :	3 Results and Discussions58	3		
			·		
3.	1	Glass Formation Area58			
3.		Density and Molar Volume63			
3.	3	Thermal Properties67			
		Glass Transition Temperature T _g 67			
3.	3.2	Stability and Activation Energy74			
		Thermal Expansion Coefficient			
3.	3.4	Specific Heat82			
3.	4	Optical Properties87			
3.	4.1	Refractive index and Molar Refractivity87			
3.	4.2	UV-Spectra93			
3.	5	Optical Spectroscopy99			
	5.1	Infrared Absorption99			
3.	5.2	Raman Spectra			
3.	6	Elastic Properties By Brillouin Scattering109			
ADDITION	A T!	MIC			
AFFLICA	4110	DNS114			
CONCL	ISIO	N116			
CONTOLO		110			
REFERENCES					
GLOSSARY					
Arabic Conclusion					
	•	· • · · • · • • · • · · · · · · · · · ·			

.

ABSTRACT

ABSTRACT

New fluoride glasses have been synthesized in ternary and quaternary systems based on NbO₂F-BaF₂-RF where RF are the alkali fluoride, LiF, NaF, KF and mixed fluoride NaF-LiF. These glasses were prepared by the usual melt-quench technique.

The effect of RF instead of NbO₂F on the glass forming range, physical properties and structure investigations of the produced fluoride glasses have been studied.

Glass densities were determined by the use of Archmedes' method and so the corresponding molar volume were calculated.

The physical properties of these glasses such as thermal properties have been carried out by applying the DSC technique. This has been done in order to find endothermic peak due to the glass transition temperature T_g , exothermic peak due to the glass crystallization T_c and endothermic peak due to the melting temperature T_m . From these results the glass stability factor S and the activation energy of crystallization E_a have been calculated. Also, thermal expansion coefficient a and specific heat C_p were determined.

The optical properties of the present new glasses such as the refractive index n_D has been measured and so the molar refractivity R_m has been calculated. From the dielectric theory, the relationship between the refractive index and number of ions /unit volume (N/V) with polarizability α' has been discussed. UV-spectra have been measured in order to calculate the optical energy

gap E_{opt} and the width of the tails of the localized states in the band gap E_{tail} of the present glasses.

The structural investigations of the present glasses have been implemented by using IR spectrophotometer in the range 400-1200 cm⁻¹ of wavenumber and Raman scattering in the range of 200-1150 cm⁻¹ of wavenumber. The observed absorption bands were assigned to their vibrational modes.

Finally the Brillouin scattering was used in order to determine the longitudinal wave velocity and elastic modulus for the tested glasses.

All the thermal, optical and mechanical properties of these fluoride glasses have been found to be very sensitive to the composition, i.e. depend on the presence of alkali fluoride, LiF, NaF and mixed NaF-LiF.

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1_1 The Glass Formation Behaviour of Halides

An increasing interest is devoted in general, to halide glasses because of their potential use for making infrared optical components and ultra-low-loss optical fibres for laser applications and specific properties such as ionic conductivity.

The history and actual situation of glass chemistry are largely dominated by oxide systems. The glass-forming ability which requires the creation of a strong tridimentional 3D covalent bond is characteristic of small highly charged cations as found in oxides such as B_2O_3 , SiO_2 , P_2O_5 The lowering of energy due to the intrinsic disorder arising from the periodicity of the glass lattice is balanced by the very strong metal-oxygen bond originating from the overlapping of the atomic orbitals of M and O in the 3D directions.

The situation is different with halides X = F, CI, Br and I, especially with fluorine which is the most electronegative elements. When associated with a metal, they generally have a great tendency to monopolize the bonding electrons and to give a pure ionic bond, which consequently enhances the crystalline state whose stability is governed by Coulombic forces. The difficulty in stabilizing halide glasses is demonstrated by their recent discovery and their absence as a natural materials.