

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

"Clinical and Biochemical Assessment of Nanohydroxyapatite Combined with Lycopene Gel in Treatment of Grade II FurcationDefects: A Randomized Controlled Clinical Study"

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University in partial fulfillment of therequirement for (PhD) Degree in Periodontology.

BY

Dalia Shawky Jaber

B.D.S (October 6th University, 2008)

M.Sc (Cairo University, 2013)

Supervisors

Prof. Dr. Nevine Hassan Kheir El Din

Professor of Oral Medicine, Periodontology and Oral DiagnosisFaculty of Dentistry - Ain Shams University

Prof. Dr. Hamdy Ahmed Nassar

Professor of Oral Medicine, Periodontology and Oral DiagnosisFaculty of Dentistry - Al Azhar University

Dr. Ola Mohamed Ezzatt

Ass. Professor of Oral Medicine, Periodontology and Oral Diagnosis

Faculty of Dentistry - Ain Shams University

Dr. Mostafa Saad El-Din Ashmawy

Ass. Professor of Oral Radiology

Faculty of Dentistry - Ain Shams University

Faculty of Dentistry Ain Shams University (2021)

Acknowledgement

First and foremost, all thanks and praise to Allah for all his blessings throughout my research work to complete it successfully.

I would like to express my sincere appreciation and gratitude to Prof. Dr./Nevine Hassan Kheir El Din, Professor of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University in Egypt; who was truthful, faithful, ready to lend a hand in every time and offered valuable assistance, support and guidance. I could not have imagined having a better advisor and mentor for my Ph.D study.

I would like also to express my deep and sincere gratitude to Prof. Dr./ Hamdy Ahmed Nassar, Professor of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Al Azhar University; for his valuable comments and supervision.

I would like to sincerely thank Assist. Prof. Dr. Ola Mohamed Ezzat, Assistant Professor of Oral Medicine, Periodontology, and Oral Diagnosis, Faculty of Dentistry, Ain Shams University; for her continuous advice, help, encouragement and supervision of the work.

My sincere thanks also goes to Assist. Prof. Dr. Mostafa Saad El-Din Ashmawy, Ass. Professor of Oral Radiology, Faculty of Dentistry, Ain Shams University for his help, work and support.

Also, I would like to thank all my dear friends, colleagues for their support and encouragement.

Dedication

The deepest gratitude goes to my father and mother who believed in me for their continuous and unlimited support especially in hard times

Special thanks to my husband and my sisters For their unlimited help and support

LIST OF CONTENTS

	Page
LIST OF ABBREVIATIONS	II
LIST OF FIGURES.	IV
LIST OF TABLES	VII
INTRODUCTION	1
REVIEW OF LITERATURE	5
AIM OF THE STUDY	32
SUBJECTS & METHODS	33
RESULTS	54
CASE PRESENTATION	68
DISCUSSION	71
SUMMARY	82
CONCLUSIONS	84
RECOMMENDATIONS	85
REFERENCES	86
ARABIC SUMMARY	_

LIST OF ABBREVIATIONS

	1 OF ADDREVIATIONS
Abbreviation	Term
8-OHDG	8-hydroxydeoxyguanosine
AAP	American Academy of Periodontology
ANOVA	Analysis Of Variance
BL	Bone Level
BMP-2	Bone Morphogenic Protein-2
CAL	Clinical Attachment Level
CBCT	Cone-beam Computed Tomography
CEJ	Cementoenamel junction
CM	Collagen Membrane
ELISA	Enzyme-linked immunosorbent assay
FI	Furcation Involvement
GCF	Gingival Crevicular fluid
GI	Gingival Index
GTR	Guided Tissue Regeneration
HA	Hydroxyapatite
HCAL	Horizontal Clinical Attachment level
HPC	Hydroxypropyl Cellulose
HRP	Horseradish Peroxidase
LP	Lycopene
MAX H	Maximum Horizontal
MAX V	Maximum Vertical
MDA	Malondialdehyde
n-HA	Nanohydroxyapatite
NSPT	Non-Surgical Periodontal Therapy
OFD	Open Flap Debridemenrt
PBS	Phosphate-Buffered Saline
PD	Pocket Depth
PDL	Periodontal ligament
PI	Plaque Index
PMNS	Polymorphonuclear leukocytes
ROS	Reactive Oxygen Species
RTU	Remote Terminal Unit
RPD	Relative Pocket Depth
SRP	Scaling and Root Planing
TCP	Tricalcium Phosphate
TMB	Tetramethylbenzidine
VCAL	Vertical Clinical Attachment level

LIST OF FIGURES

Figure no.	Title	page
1	Glickman's Classification (1953)	10
2	Hamp, Nyman and Lindhe's Classification	11
3	Tarnow and Fletcher classification	11
4	Decision tree for the management of a furcation-involved molar	21
5	Lycopene powder	37
6	Lycopene gel	38
7	Placebo gel	38
8	Vertical measurement using acrylic stent, red line represents stent margin, white line is the gingival margin, green line is the CEJ, non-continuous line represents the base of the pocket	41
9	Horizontal measurement of furcation	41
10	Maximum Vertical depth of the Furcation	42
11	Maximum Horizontal depth of the Furcation	43
12	Filter paper in place for GCF sampling	43
13	Mucoperiosteal envelop flap	48
14	Furcation site after complete debridement	48
15	Nanohydroxyapatite bone graft	49
16	NHA Bone Graft mixed with lycopene gel	49
17	Showing mixture of the graft and the lycopene gel placed in the furcation defect	50
18	Hypro-Sorb® Membrane.	50
19	Adaptation of collagen membrane in Group I	51
20	Suturing the flap	51
21	Showing a mixture of bone graft and placebo gel placed in the defect in group II	52
22	Showing adaptation of collagen membrane in Group II	52
23	Showing furcation defect after debridement in group III	53

24	Mean values of plaque index (PI) among the study groups at base-line and 6 months post-operatively	57
25	Mean values gingival index (GI) among the study groups at base-line and 6 months post-operatively.	58
26	Mean values of pocket depth (PD) among the study groups at base-line and 6 months post-operatively.	60
27	Mean values of vertical clinical attachment level (VCAL) among the study groups at base-line and 6 months post-operatively.	61
28	Mean values of horizontal clinical attachment level (HCAL) among the study groups at base-line and 6 months post-operatively.	63
29	Mean values of maximum horizontal (MAX H) depth of the furcation among the study groups at base-line and 9 months post-operatively	64
30	Mean values of maximum vertical (MAX V) depth of the furcation among the study groups at base-line and 9 months post-operatively	66
31	Mean values of 8-OHdG levels among the study groups at base-line 1week and 3 months post-operatively	68
32	Preoperative clinical photograph showing a Glickman class II furcation involvement with (RPD): 6	69
33	Postoperative clinical photograph showing a Glickman class II furcation involvement with (RPD): 4	69
34	Preoperative clinical photograph showing a Glickman class II furcation involvement with Horizontal clinical attachment loss (HCAL): 7	69
35	Postoperative clinical photograph showing a Glickman class II furcation involvement with Horizontal clinical attachment loss (HCAL): 5	69

36	Preoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum Horizontal bone loss (Max H) = 1.90	69
37	Postoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum Horizontal bone loss (Max H)=1.24	69
38	Preoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum vertical bone loss (Max V) = 1.74	69
39	Postoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum vertical bone loss (Max V) =0.73	69
40	Preoperative clinical photograph showing a Glickman class II furcation involvement with (RPD): 8	70
41	Postoperative clinical photograph showing Glickman class II furcation involvement with (RPD): 6	70
42	Preoperative clinical photograph showing a Glickman class II furcation involvement with (HCAL): 7	70
43	Postoperative clinical photograph showing a Glickman class II furcation involvement with (HCAL): 5	70
44	Preoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum Horizontal bone loss (Max H) = 2.41	70
45	Postoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum Horizontal bone loss (Max H) = 1.80	70

46	Preoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum vertical bone loss (Max V) = 1.93	70
47	Postoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum vertical bone loss (Max V) = 0.76	70
48	Preoperative clinical photograph showing a Glickman class II furcation involvement with (RPD): 8	71
49	Postoperative clinical photograph showing a Glickman class II furcation involvement with (RPD):7	71
50	Preoperative clinical photograph showing a Glickman class II furcation involvement with Horizontal clinical attachment loss (HCAL): 7	71
51	Postoperative clinical photograph showing a Glickman class II furcation involvement with Horizontal clinical attachment loss (HCAL): 6	71
52	Preoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum Horizontal bone loss (Max H) =1.38	71
53	Postoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum Horizontal bone loss (Max H) = 1.31	71
54	Preoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum vertical bone loss (Max V) = 2.35	71
55	Postoperative radiographic photograph showing a Glickman class II furcation involvement with Maximum vertical bone loss (Max V) = 2.30	71

LIST OF TABLES

Table	Title	page
No.		
1	Classifications of furcation involvement	7
2	Furcation lesions classification based on the position of the gingival margin and its relationship within the furcation defect (Pilloni and Rojas, 2018).	13
3	Comparison of demographic characteristics (age and sex) among the studied subjects	56
4	Descriptive statistics and test of significant of plaque index (PI) among the study groups at baseline and 6 months post-operatively	57
5	Descriptive statistics and test of significant of gingival index (GI) among the study groups at base-line and 6 months post-operatively.	58
6	Descriptive statistics and test of significant of probing depth (PD) among the study groups at base-line and 6 months post-operatively	59
7	Descriptive statistics and test of significant of vertical clinical attachment level (VCAL) among the study groups at base-line and 6 months post-operatively	61
8	Descriptive statistics and test of significant of horizontal clinical attachment level (HCAL) among the study groups at base-line and 6 months post-operatively	62
9	Descriptive statistics and test of significant of maximum horizontal (MAX H) depth of the furcation among the study groups at base-line and 9 months post-operatively.	64
10	Descriptive statistics and test of significant of maximum vertical (MAX V) depth of furcation among the study groups at base-line and 9 months post-operatively.	65

11	Correlation Coefficient (r) between the mean levels of mean values of maximum vertical (MAX V) depth and Mean values of maximum horizontal (MAX H) depth with the scores of clinical parameters after treatment in treated groups	66
12	Descriptive statistics and test of significant of 8-OHdG levels among the study groups at base-line 1 week and 3 months post-operatively.	67

INTRODUCTION

Periodontal diseases are complex, multifactorial, polymicrobial infections affecting 10–15% of adult populations worldwide. Furcation involvement (FI) may be defined as the invasion of the bifurcation and trifurcation of multirooted teeth by the effect of periodontal disease (*Carranza*, 2009; *Petersen and Ogawa*, 2012).

An extension of inflammation from gingiva into the adjacent bone and periodontal ligament is affected by many factors such as age, gender, ethnicity, income, social class, and educational status. The degree to which a lesion progresses is affected also by several factors; such as inflammatory response, type of bacteria present, and local factors which cause plaque accumulation (*American Academy of Periodontology, 2001*). The basic principle of nonsurgical periodontal treatment is the removal of bacterial load, to allow the body to return to the healthy state (*Ower et al., 2013*).

Periodontal disease affecting multi-rooted teeth exposing the furcation area, poses an additional challenge for the clinician to manage. This is because the unfavorable complex morphology and restricted-access area that characterize furcation defects limit not only the efficacy of nonsurgical and surgical therapies but also the patient's self-performed plaque control (*Chiu et al.*, 1991). Furthermore, the progression of the disease in the furcation area exhibits horizontal and/or vertical patterns of destruction that may result in an increased risk for tooth loss (*Dannewitz et al.*, 2016).

Several surgical approaches have been proposed for the treatment of molars with FI, including guided tissue regeneration (GTR), bicuspidization,