

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Effect of Therapeutic Radiation on Degree of Conversion, Flexural Strength and Microhardness of Three Resin Composite Materials.

Thesis

Submitted to Operative Dentistry Department, Faculty of Dentistry, Ain Shams University in Partial Fulfilment of the Requirements for Doctor Degree in Operative Dentitry.

By

Ragia Mostafa Taher Mohamed

B.D.S., Ain Shams University (2003)

M.Sc., Ain Shams University (2012)

Supervisors

Prof. Dr. Mokhtar Nagy Ibrahim

Professor of Operative Dentistry

Faculty of Dentistry, Ain Shams University

Prof. Dr. Farid Mohamed Sabry El-Askary

Professor of Operative Dentistry

Faculty of Dentistry, Ain Shams University

Prof. Dr. Mohamed Hussein Zaazou

Researcher Professor of Restorative Dentistry

National Research Centre

Prof. Dr. Amin El Sayed Amin

Professor of Medical Physics

Faculty of Medicine, Ain Shams University

I would like to express my deepest appreciation to *Prof. Dr. Mokhtar Nagi Ibrahim*, Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University. His guidance, advices and positive spirit guided me throughout this thesis. May Allah rest his soul.

My sincere gratitude, thanks and appreciation are to *Prof. Dr.*Farid Mohammed Sabry El-Askary, Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University, for his great efforts and extreme support throughout this thesis. His knowledge and wisdom added a lot to this study and to my own knowledge. It is a great privilege and honour to be one of his candidates.

I am also very grateful to *Pof. Dr. Amin El Sayed Amin*, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his valuable help, advices and encouragement throughout this thesis.

My sincere gratitude is extended to *Prof. Dr. Mohamed Hussein Zaazou*, Professor of Restorative Dentistry, Restorative and Dental Materials Department, National Research Centre, for his unlimited support and help during this study.

I am also willing to express my gratitude and thanks to *Dr. Lamia Mahmoud Moharam*, Associate Researcher Professor of Operative Dentistry, Restorative and Dental Materials Department, National Research Centre, for her dedicated efforts, support and true encouragement throughout this thesis.

To my family My Dear Mom & Dad My Brother,

You mean the world to me,

Hope I can always make you proud.

My Dear Husband and My Little Angles, Maryam, Selim, and Hassan,

You are the Reason Behind Anything I Achieve,
This is Dedicated to You.

List of Contents

List of Tables	i
List of Figures	iii
Introduction	1
Review of literature	3
Aim of the study	32
Materials and methods	33
Results	50
Discussion	78
Summary and conclusions	97
References	100
Arabic summary	

List of Tables

Table No.	<u>Table Title</u>	Page
Table 1	Materials/manufactures, composition/filler	33
	weight % and batch #	
Table 2	Investigated Experimental levels.	35
Table 3	Interactions between experimental variables for	35
	the DC % and MH.	
Table 4	Interactions between experimental variables for	36
	the FS.	
Table 5	Three-Way ANOVA analyzing the effect of	50
	radiation, material, aging and the effect of their	
	interaction on the degree of conversion of	
	different resin composites.	
Table 6	Means \pm Standard Deviations for the effect of	52
	radiation on the degree of conversion of the	
	different resin composites.	
Table 7	Means \pm Standard Deviations for the effect of	53
	material on the degree of conversion of the	
	different resin composites.	
Table 8	Means \pm Standard Deviations for the effect of	53
	aging on the degree of conversion of the	
	different resin composites.	
Table 9	Three-Way ANOVA for the effect of radiation,	54
	material, aging and their interaction on the	
	degree of conversion of the different resin	
	composites.	

i

Table 10	Means ± Standard Deviations for the effect of	55
	radiation on the flexural strength of the different	
	resin composites.	
Table 11	Means ± Standard Deviations for the effect of	56
	material on the flexural strength of the different	
	resin composites.	
Table 12	Means ± Standard Deviations for the effect of	56
	aging on the flexural strength of the different	
	resin composites.	
Table 13	Three-Way ANOVA for the effect of radiation,	57
	material, aging and their interaction on the	
	micro-hardness of the different resin composites.	
Table 14	Means ± Standard Deviations for the effect of	58
	radiation on the micro-hardness of the different	
	resin composites.	
Table 15	Means ± Standard Deviations for the effect of	59
	material on the micro-hardness of the different	
	resin composites.	
Table 16	Means ± Standard Deviations for the effect of	59
	aging on the micro-hardness of the different	
	resin composites.	

List of Figures

Figure No.	Figure Title	Page
1a and 1b	1a: Stainless-steel circular split mould. 1b:	36
	Disassembled mould.	
2a-d	2a: Resin composite material packed in the	37
	split mould and weight applied on the top glass	
	slide. 2b: Light curing of resin composite discs	
	through the glass slide. 2c: Elipar TM DeepCure-	
	L Light Curing unit, 2d: The resin composite	
	disc specimen.	
3а-с	3a: Specimens embedded in pink wax sheets.	39
	3b: Specimens setting during radiation. 3c :	
	Theraton Phoenix 60 Cobalt Radiotherapy	
	Treatment Unit.	
4a and 4b	4a: Fourier Transform Infrared Spectrometer	40
	(JASCO FT/IR 4600, Japan). 4b: Pressed KBr	
	pellets mixed with resin composite powder.	
5a-e	5a: Assembled rectangular stainless-steel	42
	mould. 5b: Disassembled rectangular stainless-	
	steel mould. 5c: Resin composite material	
	packed in the mould and weights applied on the	
	top glass slide. 5d: Light curing of resin	
	composite specimens through the glass slide.	
	6e: resin composite rectangular bar specimen.	
6	An illustration diagram representing the	43
-		

	overlapped curing technique, where the	
	rectangle represents the bar-shaped resin	
	composite, and the two overlapped circles	
	represents the diameter of the light curing tip.	
7a-c	7a: Universal testing machine (SHIMADZU	45
	5KN (AUTOGRAPH AG_X PLUS, Japan).	
	7b: stainless-steel attachment and rod. 7c: the	
	test set up with the specimen held above the	
	stainless-steel attachment and the rod attached	
	to the universal testing machine.	
8a and 8b	8a: Vickers Micro-hardness tester (NEXUS	46
	4000TM, INNOVTEST, model number 4503,	
	The Netherland). 8b: Specimen placed on the	
	platform of a Vickers Micro-hardness tester.	
9a-d	9a: specimens mounted on copper stubs to be	48
	sputter coated. 9b: specimens inside the sputter	
	coating device (S150A SPUTTER COATER,	
	Edwards, UK). 9c: specimens sputter coated	
	with gold to be examined in the scanning	
	electron microscope. 9d: scanning electron	
	microscope (Quanta 250 FEG, FEI Company,	
	Netherlands).	
10a and	Representative SEM micrographs of Grandio	60
10b	nano-hybrid composite surface, which was not	
	subjected to radiation after 24-hours storage	
	period (x8000).	
11a and	Representative SEM micrographs of Grandio	61
	£	

11b	nano-hybrid composite surface, which was
	subjected to radiation after a 24-hours storage
	period (x500 and x4000 respectively).
12a and	Representative SEM micrographs of Grandio 62
12b	nano-hybrid composite surface, which was not
	subjected to radiation at 3-months storage
	period: (x500 and x30000 respectively).
13a and	Representative SEM micrographs of Grandio 63
13b	nano-hybrid composite surface, which was
	subjected to radiation at 3-months storage
	period: (x500 and x30000 respectively).
14a and	Representative SEM micrographs of Grandio 64
14b	nano-hybrid composite surface, which was not
	subjected to radiation at 6-months storage
	period: (x500 and x8000 repectively).
15a and	Representative SEM micrographs of Grandio 65
15b	nano-hybrid composite surface, which was
	subjected to radiation at 6-months storage
	period: (x500 and x8000 respectively).
16a and	Representative SEM micrographs of Z250 XT 66
16b	nano-hybrid composite surface, which was not
	subjected to radiation after 24-hours storage
	period: (x500 and x30000 respectively).
17a and	Representative SEM micrographs of Z250 XT 67
17b	nano-hybrid composite surface, which was
	subjected to radiation after 24-hours storage
	period: (x500 and x8000 respectively).

18a and	Representative SEM micrographs of Z250 XT	68
18b	nano-hybrid composite surface, which was not	
	subjected to radiation at 3-months aging period:	
	(x500 and x3000 respectively).	
19a, 19b	Representative SEM micrographs of Z250 XT	69
and 19c	nano-hybrid composite surface, which was	
	subjected to radiation after 3-months storage	
	period: (x500, x2000 and x8000 respectively).	
20a and	Representative SEM micrographs of Z250 XT	70
20b	nano-hybrid composite surface, which was not	
	subjected to radiation at 6-months storage	
	period: (x500 and x30000 respectively).	
21a and	Representative SEM micrographs of Z250 XT	71
21b	nano-hybrid composite surface, which was	
	subjected to radiation at 6-months storage	
	period: (x500 and x16000 respectively).	
22a and	Representative SEM micrographs of Herculite	72
22b	XRV Ultra hybrid composite surface, which	
	was not subjected to radiation after 24 hours	
	storage period: (x500 and x30000 respectively).	
23a and	Representative SEM micrographs of Herculite	73
23b	XRV Ultra hybrid composite surface, which	
	was subjected to radiation after 24 hours	
	storage period: (x500 and x30000 respectively).	
24a and	Representative SEM micrographs of Herculite	74
24b	XRV Ultra hybrid composite surface, which	
	was not subjected to radiation at 3 months	

	storage period: (x500 and x4000 respectively).	
25a and	Representative SEM micrographs of Herculite	75
25b	XRV Ultra hybrid composite surface, which	
	was subjected to radiation at 3 months storage	
	period: (x500 and x8000 respectively).	
26a and	Representative SEM micrographs of Herculite	76
26b	XRV Ultra hybrid composite surface, which	
	was not subjected to radiation at 6 months	
	storage period: (x500 and x30000 respectively).	
27a and	Representative SEM micrographs of Herculite	77
27b	XRV Ultra hybrid composite surface which	
	was subjected to radiation at 6 months storage	
	period: (x500 and x16000 respectively).	