

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Isolation and Characterization of Bacteriophages Active against Clinical Isolates of MRSA

A Thesis

Submitted in Partial Fulfillment of the Requirements for

Master's degree

In Pharmaceutical Sciences

(Microbiology and Immunology)

By

Israa Mohamed Abd-Allah Abd El-Maqsoud

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, 2017.

Isolation and Characterization of Bacteriophages Active against Clinical Isolates of MRSA

A Thesis

Submitted in Partial Fulfillment of the Requirements for

Master's degree In Pharmaceutical Sciences (Microbiology and Immunology)

By

Israa Mohamed Abd-Allah Abd El-Maqsoud

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy – Ain Shams University, 2017.

Under Supervision of

Prof. Dr. Nadia Abdel-Halim Hassouna

Professor of Microbiology and Immunology, Faculty of Pharmacy – Ain Shams University

Prof. Dr. Khaled Mohammad Anwar AboShanab

Professor of Microbiology and Immunology, Vice Dean for Postgraduate Affairs and Scientific Research, Faculty of Pharmacy – Ain Shams University

Assoc. Prof. Dr. Ghadir Saied El-Housseiny

Associate Professor of Microbiology and Immunology, Faculty of Pharmacy – Ain Shams University

Acknowledgment

In the name of Allah, the Most Gracious and the Most Merciful First and foremost, I thank **Allah** for granting me the ability to complete this work. My humblest gratitude is for His blessing given to me through all the opportunities that I could experience and learn from along the study.

I would like to express my deepest thanks to **Prof. Dr. Nadia Hassouna**, Professor of Microbiology and Immunology, and founder of the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, for her valuable supervision, and guidance throughout the work.

I am also greatly indebted to **Prof. Dr. Khaled M. AboShanab**, Vice Dean for Postgraduate Studies and Research, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for his endless support and follow up. I would like to thank him for securing facilities whenever needed. I am most grateful to him for suggesting the interesting point of this research, planning the work and providing assistance throughout this study.

My sincere gratitude and deepest appreciation go for Assoc. Prof. Dr. Ghadir Saied El-Housseiny, Associate Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for her continuous follow-up and support, providing detailed and keen scientific supervision, and her constructive criticism throughout the study. I am especially grateful to her for sparing no effort in training me on Design Expert software used in the optimization step. I am glad I had the chance to learn from her, throughout the study.

I want to express my appreciation for **Prof. Dr. Nadia Hamdy**, Professor of Biochemistry and Head of the Biochemistry Department, Faculty of Pharmacy, Ain Shams University, for providing support

with performing some of the experiments at the research laboratories of Biochemistry Department.

Big thanks is directed to **Prof. Dr. Khaled El-Dougdoug,** Professor of Virology and Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for his generous guidance at the start of the experimental work.

I would also like to show my appreciation for the huge help and scientific advice kindly provided by **Assoc. Prof. Dr. Samar El-Masry**, Associate Professor of Virology and Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

I am greatly indebted to my dear **colleagues** and to all the **workers** at the Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for their help and support.

My everlasting thanks and appreciation are extended to my beloved **family** for their continuous support, encouragement and sincere help throughout my whole life.

والحمد لله رب العالمين...

Israa Mohamed Abd-Allah

List of Contents	I
List of Abbreviations	VI
List of Tables	VIII
List of Figures	X
Abstract	1
Introduction	4
Literature Review	6
1. Antibiotic Resistance: the crisis.	6
2. Methicillin resistant Staphylococcus aureus (MRSA)	7
2.1. Staphylococcus aureus: A Friend or Foe?	7
2.2. Diseases caused by <i>S. aureus</i>	8
2.3. Resistance emergence in <i>S. aureus</i>	9
2.4. Prevalence of MRSA colonization	11
2.5. Types of MRSA	12
2.6. Virulence of MRSA	15
2.7. Treatment of MRSA	22

3. Rekindling of A Masterful Precedent; Bacteriophage	
3.1. Historical overview	24
3.2. Characters, structure and classification	26
3.3. Assets and shortcomings	31
3.4. Phage pharmacotherapy	39
4. Marked real life experiences involving MRSA and	
bacteriophages	44
Materials and Methods	49
Materials	49
1. Microbial isolates and samples	49
1.1. Bacterial clinical isolates	49
1.2. Environmental samples used as sources of bacteriophages	49
2. Chemicals	51
3. Culture media	52
3.1. Readymade media and media components	52
3.2. In-house formulated media	53
4. Antimicrobial susceptibility discs	54
5. Buffers, solutions and reagents	55
6. Devices	56

Methods	58
1. Collection of clinical bacterial isolates	58
1.1. Purification and preservation of the collected	58
bacterial isolates	
1.2. Identification of the collected isolates	59
2. Determination of the susceptibility profiles of the collected	
MRSA isolates	62
3. Recovery of bacteriophages from environmental samples	63
3.1. Isolation, propagation and purification of <i>S. aureus</i> specific	
bacteriophages	63
3.2. Screening of the harvested lysates for lytic activity against	
MRSA	67
a. Qualitative assay (Spot test)	68
b. Quantitative assay (Plaque assay)	70
3.3. Bacteriophage propagation	71
4. Characterization of the isolated bacteriophages	72
4.1. Biological properties	72
4.2. Physical characterization	74
4.3. Chemical characterization	75
5. Optimization of phage production	76
5.1. Studying different factors influencing the production of the	ie two
phages L10 and F2 using one factor at a time (OFAT)	76

5.2. Production optimization using response surface meth-	odology
(RSM)	78
Results	83
1. Collection and identification of the bacterial isolates	83
1.1. Purification and preservation of the collected bacterial iso	lates 83
1.2. Identification of the collected isolates	83
2. Antimicrobial susceptibility testing	86
3. Recovery of bacteriophages from environmental samples	87
3.1. Harvesting crude lysates from the environmental samples c	ollected
	87
3.2. Screening the harvested crude lysates for bacteriophage	s active
against MRSA	87
a) Qualitative assay (Spot test)	87
b) Quantitative Assay (Plaque assay)	91
4. Characterization of bacteriophages	94
4.1. Biological properties	94
4.2. Physical characterization	97
4.3. Chemical characterization	97
5. Production optimization of the two phages, L10 and F2	98
5.1. Optimization using OFAT	98
5.2. RSM optimization of phage production	102
Discussion	113

Future perspectives	130
Conclusion	131
Summary	132
References	134
الملخص العربي	-1-

List of Abbreviations

Abbreviation	Definition
ACME	Arginine catabolic mobile
	element
AMR	Antimicrobial resistance
AMK	Amikacin
ARG	Antibiotic resistance genes
AMP	Antimicrobial peptide
AZM	Azithromycin
CDC	Centers for Disease Control and
	Prevention
CF	Cystic fibrosis
CPP	Cell-penetrating peptide
CFU	Colony forming unit
CIP	Ciprofloxacin
CLSI	Clinical and Laboratory
	Standards Institute
GEN	Gentamicin
DNA	Deoxyribonucleic acid
DCN	Doxycycline
eIND	Emergency Investigational
	New Drug

Abbreviation	Definition
FDA	Food and Drug Administration
FOX	Cefoxitin
HGT	Horizontal gene transfer
IDSA	Infectious Diseases Society of
IPM	America Imipenem
LB	Luria Bertani
MSCRAMMs	Microbial surface components
	recognizing adhesive matrix
	molecules
MDR	Multidrug-resistant
MRSA	Methicillin-resistant
	Staphylococcus aureus
PBP(s)	Penicillin binding protein(s)
PFU	Plaque forming unit
PRR	Pattern recognition receptor
PEG	Polyethylene glycol
TMP/SMX	Trimethoprim/sulfamethoxazole
SCV	Small colony variant
VRSA	Vancomycin resistant
	Staphylococcus aureus

List of Tables

Table No.	Title	Page No.
1	Environmental samples collected and their	51
	numbers	
2	Chemicals used in the study	52
3	Readymade media used in the study	53
4	Antimicrobial discs used in the study	55
5	Devices used in the study	57
6	Factors selected for RSM optimization	80
7	The D-optimal design production runs suggested for each of L10 and F2 phages	82
8	Results of the VITEK identification of the collected MRSA isolates	83
9	Results of the spot test screening of the lysates obtained from the phage isolation procedure.	90
10	Number of MRSA isolates lysed by each phage as a representation of their host ranges	95