

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Comparison of Endoscope assisted and Microscope assisted Type 1 Tympanoplasty

A META-ANALYSIS SUBMITTED FOR PARTIAL FULFILMENT OF MASTER DEGREE IN **Otorhinolaryngology**

Presented by

Kirolos Botros Mosaad Metry M.B.B.Ch., Assiut University

Under supervision of

Prof. Dr. / Mohamed Amir Hassan

Professor of Otorhinolaryngology - Faculty of Medicine Ain Shams University

Ass. Prof. Dr. / Ahmed Mahmoud Maarouf

Assistant Professor of Otorhinolaryngology - Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2022

This work would never be crowned by success without the blessing of **ALLAH**, to whom my loyalty will remain forever beyond any compromise.

I appreciate the valuable help I have received from everyone who has contributed to this meta-analysis.

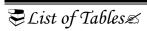

I would like to express my special appreciation and thanks to my supervisor **Prof. Dr. Mohamed Amir Hassan,** Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for encouraging my research. His advice and guidance on both research and my career have been priceless.

I would like to express my profound gratitude and thanks to **Dr. Ahmed Mahmoud Maarouf**, Assistant Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his valuable guidance, brilliant comments and suggestions, and continuous encouragement.

Special gratitude and thanks go to all staff members and personnel of *Otorhinolaryngology and Community Medicine* departments, for their help throughout this work.

Finally, Words cannot express how grateful I am to **All My Family Members** for their great support. Your prayer for me was what sustained me thus far.

Kirolos Botros Mosaad Metry



CONTENTS

INTRODUCTION	1
OBJECTIVES	3
REVIEW OF LITERATURE	4
A NATOMY	4
TYMPANOPLASTY	19
APPROACHES TO THE MIDDLE EAR IN TYMPANOPLASTY	27
Sources of the graft tissue and their propertie	s 32
GRAFT PLACEMENT TECHNIQUES	41
MERITS AND DEMERITS OF THE ENDOSCOPE COMP	ARED
WITH THE CONVENTIONAL MICROSCOPE FOR TY	PE i
TYMPANOPLASTY	49
MATERIALS AND METHODS	55
RESULTS	60
DISCUSSION	72
STRENGTHS AND LIMITATIONS	81
CONCLUSION	82
RECOMMENDATIONS	83
REFERENCES	84
SIIMMARY	95

LIST OF ABBREVIATIONS

Item	Abbreviation / Acronym
ABG	Air-bone gap
AES	Anterior epitympanic space
BC	Bone conduction
CES	Canal endoscopic scale
CHL	Conductive hearing loss
CI	Confidence interval
COM	Chronic otitis media
EAC	External auditory canal
EES	Endoscopic ear surgery
ET	Endoscopic tympanoplasty
FEES	Functional endoscopic ear surgery
FGF	Fibroblast growth factor
HAFGM	Hyaluronic acid fat graft myringoplasty
IV	Inverse variance
М-Н	Mantel-Haenszel
MT	Microscopic tympanoplasty
NM	Not mentioned
OR	Odds ratio
PES	Posterior epitympanic space
PRISMA	Preferred Reporting Items for Systematic reviews and Meta-Analyses
RCT	Randomized controlled trial
SD	Standard deviation
SE	Standard error
SMD	Standardized mean difference
ST	Sinus tympani
TEES	Transcanal endoscopic ear surgery
TM	Tympanic membrane
TMF	Tympanomeatal flap
TMJ	Temporomandibular joint

LIST OF TABLES

Table 1. Endoscopic classification of the external auditory can	al
using the canal endoscopic scale in a series of 5000 patients	7
Table 2. Classification of tympanoplasty 2	!1
Table 3. Elastic moduli of the tympanic membrane and various	ıs
graft materials3	16
Table 4. Level of significance of p-values	;9
Table 5. Summary of interventions and study characteristics 6	51
Table 6. Summary of efficacy outcome measures in all studies 6	52
Table 7. Summary of safety outcome measures in all studies 6	53

LIST OF FIGURES

Figure 1. Endoscopic anatomical classification of the external
auditory canal using the canal endoscopic scale (CES)6
Figure 2. A normal left tympanic membrane8
Figure 3. The superior and inferior subdivisions of the medial
compartments of the retrotympanum in the right ear 11
Figure 4. Different morphological types of the sinus tympani 13
Figure 5. Different morphologies of ponticulus14
Figure 6. The Wullstein classification of types of tympanoplasty. 20
Figure 7. Transcanal incisions. 29
Figure 8. Endaural incisions30
Figure 9. A standard postauricular incision31
Figure 10. Schematic comparison of (A) a thin membrane and
(B) a thick cartilage plate in terms of pressure withstanding
and acoustic sensitivity35
Figure 11. Deflection of cartilage disks of varying thickness
compared with tympanic membrane, fascia, and
perichondrium exposed to a static pressure load in the ear
canal-tympanic membrane model 37
Figure 12. Diagram showing the radial, circular, and parabolic
arrangement of the collagen fibers in the lamina propria of
the tympanic membrane37
Figure 13. Amplitude-frequency curves for tympanic membrane,
perichondrium, fascia, and cartilage disks of varying thickness
stimulated by exposure to white noise at 70 dB in the ear canal-
tympanic membrane model 39

Figure 14. Microscopic (A) and endoscopic (B, C) view of
the middle ear50
Figure 15. PRISMA flow diagram for study selection60
Figure 16. (A) Forest plot comparing the operative time of
endoscopic tympanoplasty and microscopic tympanoplasty.
(B) Funnel plot of the operative time65
Figure 17. (A) Forest plot comparing the air-bone gaps
improvement of endoscopic tympanoplasty and microscopic
tympanoplasty. (B) Funnel plot of the air-bone gaps
improvement66
Figure 18. (A) Forest plot comparing the graft uptake rate of
endoscopic tympanoplasty and microscopic tympanoplasty.
(B) Funnel plot of the graft uptake rate67
Figure 19. (A) Forest plot comparing the additional maneuvers
rate of endoscopic tympanoplasty and microscopic
tympanoplasty. (B) Funnel plot of the canaloplasty rate 68
Figure 20. Forest plot comparing the postoperative pain rate of
endoscopic tympanoplasty and microscopic tympanoplasty69
Figure 21. Forest plot comparing the postoperative complications
rate of endoscopic tympanoplasty and microscopic
tympanoplasty

ABSTRACT

Background: Tympanoplasty and myringoplasty are commonly used operations for treating patients suffering from chronic otitis media. Using the microscope in tympanoplasty has been the conventional procedure for repairing perforated tympanic membranes since the 1950s, but ear surgeons have increasingly practised endoscope-assisted tympanoplasty since the late 1990s.

Objective: to analyze and compare the available data about the outcomes of endoscopic and microscopic type I tympanoplasty.

Data Sources: PubMed, Cochrane library Ovid, Scopus, Google scholar, and ClinicalTrials.

Methods: We conducted a meta-analysis in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. We included comparative studies describing type I tympanoplasty, and comparing surgical outcomes of the endoscope with the microscope in terms of efficacy and safety. Efficacy was measured by standardized mean difference (SMD) with 95% confidence interval (CI) for operative time and postoperative air-bone gap (ABG) improvement; and odds ratio (OR) with 95% CI for graft uptake rate. Safety was measured by OR with 95% CI for additional maneuvers rate (i.e. canaloplasty and posterior wall curettage), postoperative pain rate and complications rate.

Results: Our systematic search yielded 22 studies (involving 1578 interventions; with 766 in the endoscopic group, and 812 in the microscopic group) meeting the inclusion criteria and eligible for analysis. The pooled graft uptake rates and hearing results of endoscopic and microscopic tympanoplasty showed non-significant

differences (OR: 0.95; 95% CI 0.68 to 1.34; p = 0.79; $I^2 = 0\%$) (SMD of ABGs improvement: 0.03; 95% CI -0.33 to 0.39; p = 0.87; $I^2 = 89\%$). In contrast, the endoscopic type I tympanoplasty outperforms the microscopic tympanoplasty regarding a highly significant decrease not only in pooled mean operative time but in the pooled rates of the additional maneuvers, postoperative pain and complications.

Conclusions: Based on our meta-analysis, the surgical outcomes of endoscope-assisted and microscope-assisted type I tympanoplasty in terms of postoperative hearing results and the graft uptake rate were comparable. Operative time, additional maneuvers rate, postoperative pain rate and complications rate, on the other hand, proved to be significantly reduced with using the endoscope compared to using the microscope. Hence, the endoscope is as efficient as the microscope in type I tympanoplasty but less invasive, fewer in complications and shorter in operative time.

Introduction & Objectives

INTRODUCTION

Perforation of the tympanic membrane (TM) is principally due to middle ear infections, trauma or iatrogenic injury. Up to 80% of TM perforations heal spontaneously; as for the remaining, surgical repair is usually required. In 1878, Berthold was the first one to introduce the term "myringoplasty", when he performed the first surgical closure of a TM perforation, then myringoplasty was further developed by two German otologists Wullstein and Zollner.

Chronic otitis media (COM) is a long-lasting infection of a part or whole of the middle ear cavity. Otorrhea, a permanent TM perforation and hearing loss characterize COM.⁶ COM is a highly prevalent disease of the middle ear that may progress to serious complications in case of incorrect and inadequate treatment.⁷

Tympanoplasty is a surgical procedure aiming at eradicating infection, repairing the perforated TM, and rehabilitation of hearing in patients suffering from COM.⁸ It is one of the most common otologic surgeries performed on the middle ear and even in the otorhinolaryngology practice. Over the last century, everywhere, ear surgeons have made continued efforts to achieve the perfect surgical result.⁹

Traditionally, ear surgeons operate on the middle ear using microscope-assisted techniques. Nevertheless, a microscope provides a straight-line vision that restricts visualization of the deep recesses in the middle ear. The presence of canal narrowing or bony overhangs may limit the surgical field, so the conventional microscopic technique demands a more invasive procedure for exposure and visualization of deeper structures beyond them.

₹ Introduction **₹**

Accordingly, ear surgeons have increasingly performed middle ear surgeries using otoendoscopy, and it has recently been suggested that otoendoscopy could substitute for otomicroscopy.

Endoscopes can provide a wide field of view with magnified images. Otologists can also rapidly change the view by inserting or withdrawing the endoscope to obtain a close-up view or a wide-angle view, while the microscope needs repeated adjustment. Furthermore, otologists can rotate an angled otoendoscope to obtain excellent all-round vision, thereby allowing visualization of the anterior margin of the TM perforation as well as the anterior canal wall, attic, and hypotympanum in the middle ear.¹⁰

Despite the well-known merits of endoscopic techniques, some concerns about their efficiency and safety are still present among some ear surgeons and hinder the transition from conventional microscopic tympanoplasty to endoscopic tympanoplasty for those surgeons.¹¹

Therefore, there is a need for a meta-analysis comparing the outcomes of both endoscopy and microscopy techniques of type I tympanoplasty in terms of efficacy and safety.