

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

NEPHRO-PROTECTIVE EFFECTS OF GRAPE AND GUAVA SEEDS EXTRACT ON GENTAMICIN INDUCED NEPHROTOXICITY IN RATS

Submitted By

Shaimaa Ahmed Abd Elwahab Radwan

B.Sc. of Science, (Biochemistry), Faculty of Women for Arts, Science & Education, Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Faculty of Graduates Studies & Environmental Research Ain Shams University

2021

APPROVAL SHEET

NEPHRO-PROTECTIVE EFFECTS OF GRAPE AND GUAVA SEEDS EXTRACT ON GENTAMICIN INDUCED NEPHROTOXICITY IN RATS

Submitted By Shaimaa Ahmed Abd Elwahab Radwan

B.Sc. of Science, (Biochemistry), Faculty of Women for Arts, Science & Education, Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Master Degree In

Environmental Sciences Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Dr. Maha Mahmoud Mohamed

Associate Prof. of Biochemistry & Nutrition Faculty of Women for Arts, Science & Education Ain Shams University

2-Prof. Dr. Osama El-Sayed Mostafa

Prof. of Nutrition & food Sciences Dean of Faculty Faculty of Specific Education Ain Shams University

3-Prof. Dr. Awatif Mohamed Abd Elmksod

Prof. of Biochemistry National Research Innstitute

4-Prof. Dr. Hanaa Hussein El-Sayed

Prof. of Environmental Studies for Nutrition Chemistry and Metabolism Nutrition Chemistry and Metabolism Department National Nutrition Institute

NEPHRO-PROTECTIVE EFFECTS OF GRAPE AND GUAVA SEEDS EXTRACT ON GENTAMICIN INDUCED NEPHROTOXICITY IN RATS

Submitted By Shaimaa Ahmed Abd Elwahab Radwan

B.Sc. of Science, (Biochemistry), Faculty of Women for Arts, Science & Education, Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1- Dr. Maha Mahmoud Mohamed

Associate Prof. of Biochemistry & Nutrition Faculty of Women for Arts, Science & Education Ain Shams University

2-Prof. Dr. Awatif Mohamed Abd Elmksod

Prof. of Biochemistry National Research Innstitute

3-Prof. Dr. Eman Mostafa Sadak

Prof. of Histology Faculty of Medicine Cairo University

2022

Acknowledgment

First and forever, thanks to Alla that this work has been completed.

I wish to express my sincere appreciation and deepest gratitude to **Prof. Dr. Awatif Abdel-Maksoud,** Prof. of Biochemistry, National Nutrition Institute, for her instructive supervision, sincere encouragement, continuous guidance, fruitful criticism, and valuable help that she kindly offered throughout the development of this work. She also, tided me over many difficulties throughout the work; no words seem to be sufficient to record my deepest thanks to her.

I would like to express my deepest thanks to **Prof. Dr. Maha** Mahmoud Mohamed, Assist. Prof Biochemistry and Nutrition Department, Women's College, Ain Shams University, for her keen supervision, valuable advice, constant support, ideal motivation and continuous encouragement that gave me power to complete this work, she also, tided me over many difficulties throughout the work, no words seem to be sufficient to record my deepest thanks to her.

Gratitude and thanks to **Prof. Dr. Eman Mostafa Sadak**, Professor of Histology–Faculty of Medicine /Cairo University for her help in the histology part of this work.

Finally, no words can express my feelings of gratitude to my beloved family and to all my friends for their continuous help, support and encouragement that enabled this work to be completed.

ABSTRACT

The present study was undertaken to investigate the nephroprotective effects of grape and / or guava seeds ethanolic extracts on gentamicin induced nephrotoxicity in rats. Rats were divided into eight experimental groups. Group 1 (control group) was injected intraperitonealy with saline solution; Groups (2, 3 and 4 were administrated a daily oral dose of grape seeds extract (40 mg/kg/day, p.o), guava seeds extracts (300 mg/kg/day, p.o) or mixture of both, respectively; to demonstrate their safety. Group 5 was intoxicated with gentamicin (100 mg/kg/day, i.p). Groups (6, 7 and 8) received oral dose of grape and / or guava seeds extracts along with intraperitoneal injection of gentamicin to investigate the beneficial effect of these extracts against gentamicin nephrotoxicity for a period of consecutive 10 days.

At the end of treatment period, (10 days, 24 hours after the last injection), body weights of rats were determined and animals were sacrificed. Then, absolute and relative kidney weights were determined. The following parameters were measured: serum levels of creatinine, urea, uric acid, total protein, sodium and potassium, serum lipid profile, serum activity of alkaline phosphatase, activity of erythrocyte copper, zinc superoxide dismutase (Cu, Zn-SOD), blood and renal levels of reduced glutathione (GSH) and renal content of malondialdehyde (MDA). The level of gene expression of renal kidney injury molecule-1 (KIM-1) and nuclear factor kappa (NF-κB) were also determined. In addition, histological examination of renal sections was carried out.

The results of the present study revealed that gentamicin injection elevated serum levels of urea and creatinine. Moreover, gentamicin injected rats exhibited a reduction in the activity of erythrocyte Cu, Zn-SOD and blood and renal levels of GSH along with elevation in renal level of MDA. Upregulation of KIM-1 and NF- κ B gene expression was also observed in gentamicin injected rats as compared with normal control. Simultaneous administration of grape and guava seeds extracts with gentamicin attenuated the nephrotoxic effects of gentamicin as indicated by normalization of renal function parameters. In addition, seeds extract reduced renal lipid peroxidation, raised the activity of erythrocyte Cu, Zn-SOD and increased the levels of blood and renal GSH. Moreover, seeds extracts down regulated KIM-1 and NF- κ B gene expression. Histopatholgical evaluation supported the biochemical findings.

In conclusion, grape and guava seeds extracts administration to normal rats did not show any physiological negative effects throughout the time of the study, this may point to the relative safety of these extracts. Treatment with grape and guava seeds extracts ameliorated nephrotoxicity via antioxidant and anti-inflammatory effects.

Key words: Gentamicin, nephrotoxicity, grape seeds extract, guava seeds extract, rats

CONTENTS

Subject	Page
Tables list	IV
Figures list	V
Abbreviation	X
Abstract	
Introduction	1
Aim of work	4
Review of Literature	5
Kidney	5
Assessment of renal dysfunction	9
Renal function tests	9
Serum urea	10
Serum creatinine	10
Serum electrolytes	11
Kidney Injury Molecule-1(KIM-1)	13
Nuclear factor kappa (NF-κB)	14
Acute kidney injury (AKI)	15
Nephrotoxicity	16
Aminoglycosides	17
Gentamicin	18
Grape seeds (GS)	22
Phytochemical Compounds in Grape Seeds	23
Pharmacological Properties	24

Subject	Page
Guava seeds (GVS)	26
• Composition	
Nutritional benefits of GVS	27
Materials and Methods	29
Materials	29
Gentamicin sulphate	29
Grape and Guava seeds extracts	29
Animals	29
Methods	30
Induction of nephrotoxicity	30
Dose and route of administration of grape seeds extract	
and guava seeds extract	30
Experimental animal and work design	30
Treatment schedule	31
Biochemical analysis	33
Determination of serum creatinine concentration	33
Determination of serum urea concentration	33
Determination of serum uric acid concentration	34
Determination of serum total protein (TP) concentration	34
Determination of serum potassium (K) concentration	35
Determination of serum sodium(Na) concentration	35
Determination of serum alkaline phosphatase activity	
(ALP) concentration	36

Subject	Page
Determination of reduced glutathione (GSH) in blood and	
kidney homogenate	36
Determination of malondialdehyde (MDA) in the kidney	
homogenate	37
Determination Cu, Zn-superoxide dismutase activity	37
Determination of serum cholesterol	38
Determination of serum triacylglycerol	38
• Determination of serum high density lipoprotein (HDL)	39
Determination of serum low density lipoprotein (LDL)	40
Determination of kidney injury molecule-1(KIM-1)	40
Determination of nuclear factor kappa (NF-κB)	40
Histological analysis	41
Statistical analysis	41
Results	42
Biochemical results	42
Histological results	67
Discussion	82
Summary	93
Conclusion	99
Recommendation	100
References	101
Arabic summary	5-1

LIST OF TABLES

Table No.	Subject	Page
Table 1	Effects of grape seeds and guava seeds extracts	
	on body weight changes, kidney weights	
	(absolute and relative) in normal and gentamicin	
	treated rats	43
Table 2	Effects of grape and guava seeds extracts on	
	kidney function tests in normal and gentamicin	
	treated rats	46
Table 3	Effects of grape and guava seeds extracts on	
	serum alkaline phosphatase and renal KIM-1 gene	
	expression in normal and gentamicin treated rats	50
Table 4	Effects of grape and guava seeds extracts on	
	blood levels of reduced glutathione (GSH) and	
	erythrocyte Cu, Zn- SOD activity in normal and	
	gentamicin treated rats	53
Table 5	Effects of grape and / or guava seeds extracts on	
	renal levels of reduced glutathione (GSH), renal	
	malondialdehyed (MDA) and renal nuclear factor	
	kappa (NF kappa) gene expression in normal and	
	gentamicin treated rats	56
Table 6	Effects of grape and guava seeds extracts on	
	serum sodium and potassium in normal and	
	gentamicin treated rats	60
Table 7	Effects of grape and guava seeds extracts on	
	serum lipid profile in normal and gentamicin	
	treated rats	64

LIST OF FIGURES

Figure .No	Subject	Page
Figure 1	Gross anatomy of kidney	5
Figure 2	Components of the nephron	7
Figure 3	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum creatinine in normal and gentamicin	
	treated rats	47
Figure 4	Effects of grape seeds and guava seeds extracts on	
	serum urea in normal and gentamicin treated rats	47
Figure 5	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum uric acid in normal and gentamicin	
	treated rats	48
Figure 6	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum total protein in normal and	
	gentamicin treated rats	48
Figure 7	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum alkaline phosphatase in normal and	
	gentamicin treated rats	51
Figure 8	Effects of grape seeds and guava seeds ethanolic	
	extracts on Renal kidney injury molecule-1 in normal	
	and gentamicin treated rats	51
Figure 9	Effects of grape seeds and guava seeds ethanolic	
	extracts on blood reduced glutathione in normal and	
	gentamicin treated rats	55
Figure 10	Effects of grape and guava seeds ethanolic extracts on	
	erythrocyte Cu, Zn- SOD activity in normal and	
	gentamicin treated rats	55

Figure .No	Subject	Page
Figure 11	Effects of grape and/or guava seeds ethanolic extracts	
	on renal (GSH), in normal and gentamicin treated rats	57
Figure 12	Effects of grape seeds and guava seeds ethanolic	
	extracts on Renal malondialdehyde in normal and	
	gentamicin treated rats	57
Figure 13	Effects of grape seeds and guava seeds ethanolic	
	extracts on Renal nuclear factor kappa in normal and	
	gentamicin treated rats	58
Figure 14	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum sodium in normal and gentamicin	
	treated rats	61
Figure 15	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum potassium in normal and	
	gentamicin treated rats	61
Figure 16	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum cholesterol in normal and	
	gentamicin treated rats	65
Figure 17	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum triacylglycerol in normal and	
	gentamicin treated rats	65
Figure 18	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum HDL-cholesterol in normal and	
	gentamicin treated rats	66
Figure 19	Effects of grape seeds and guava seeds ethanolic	
	extracts on serum LDL-cholesterol in normal and	
	gentamicin treated rats	66

Figure .No	Subject	Page
Figure 20	A photomicrograph of section kidney cortex in normal	
	control rats (H & E X 400)	69
Figure 21	A photomicrograph of section kidney medulla in	
	normal control rats (H & E X 400)	69
Figure 22	A photomicrograph of section kidney cortex in normal	
	control rats (PASX400)	70
Figure 23	A photomicrograph of section kidney cortex in normal	
	control rats received grape seeds ethanolic extracts (H	
	& E X 400)	70
Figure 24	A photomicrograph of section kidney medulla in	
	normal control rats received grape seeds ethanolic	
	extracts (H & E X 400)	71
Figure 25	A photomicrograph of section kidney cortex in normal	
	control rats received grape seeds ethanolic extracts	
	(PASX400)	71
Figure 26	A photomicrograph of section kidney cortex in normal	
	control rats received guava seeds ethanolic extracts (H	
	& E X 400)	72
Figure 27	A photomicrograph of section kidney medulla in	
	normal control rats received guava seeds ethanolic	
	extracts (H & E X 400)	72
Figure 28	A photomicrograph of section kidney cortex in normal	
	control rats received guava seeds ethanolic extracts	
	(PASX400).	73
Figure 29	A photomicrograph of section kidney cortex in normal	
	control rats received grape and guava seeds ethanolic	
	extracts (H & E X 400)	73